5 Partiell-rekursive Funktionen

Uneingeschränkter μ -Operator: $\mathbf{M}(\mathbf{\psi})(\vec{x}) = \mu t(\mathbf{\psi}(\vec{x},t) = 0)$

$$\begin{array}{ll} \mathcal{P} &:=& \bigcup_{i\in \mathrm{I\!N}} \mathcal{B}_i \text{ , wobei} \\ \\ \mathcal{B}_0 &:=& \mathcal{A}_0 \text{ , und} \\ \\ \mathcal{B}_{i+1} &:=& \mathcal{B}_i \cup \{\mathbf{S}(\phi; \psi_1, \ldots, \psi_k : k \in \mathrm{I\!N} \wedge \phi, \psi_1, \ldots, \psi_k \in \mathcal{B}_i\} \cup \\ & \cup \{\mathbf{R}(\phi, \psi) : \phi, \psi \in \mathcal{B}_i\} \cup \{\mathbf{M}(\phi) : \phi \in \mathcal{B}_i\} \end{array}$$

Rekursive Funktionen:

$$\mathcal{R} := \mathcal{P} \cap \{f : f \text{ ist vollständig definiert}\}$$

WS 2009/2010 24

Logik und Berechenbarkeit

5. Partiell-rekursive Funktionen

- 1. **LOOP**-Programme sind allgemeine Programme.
- 2. Sind INPUT X_1, \ldots, X_ℓ INPUT Y_1, \ldots, Y_k

P

Q

OUTPUT X_i

OUTPUT Y_j

allgemeine Programme, haben \mathbf{P} und \mathbf{Q} keine Sprungmarken gemeinsam und kommt i nicht in \mathbf{P} vor, so sind auch

INPUT
$$X_1, ..., X_\ell$$
 INPUT $X_1, ..., X_\ell$ und INPUT $X_1, ..., X_\ell$

P

LOOP X_i

i P

Q

P

IF $X \neq 0$ GOTO i

OUTPUT Y_j

END IF $X \neq 0$ GC OUTPUT X_m OUTPUT X_m

allgemeine Programme.

5.1 Allgemeine Programme

Erweiterung der **LOOP**-Programme um zusätzliche Bausteine:

- a) [i] , wobei $i\in {
 m I\!N}$ (Sprungmarke), und
- b) IF $X \neq 0$ GOTO i.

WS 2009/2010

5. Partiell-rekursive Funktionen

25

Logik und Berechenbarkeit

Satz 5.1: Eine Funktion ist genau dann partiell-rekursiv, wenn sie von einem allgemeinen Programm berechnet wird.

Lemma 5.2: Es sei ${\rm I\!P}$ ein allgemeines Programm. Dann ist die Funktion ${\rm Time}_{\rm I\!P}$ partiell-rekursiv. ${\rm Time}_{\rm I\!P}$ ist rekursiv, falls die von ${\rm I\!P}$ berechnete Funktion $\phi_{\rm I\!P}$ ebenfalls rekursiv ist.

Lemma 5.3: Die Funktion $\psi(x_1,...,x_m)$ sei durch \mathbb{P} berechnet, und $f(x_1,...,x_m)$ sei rekursiv. Dann ist

$$\phi(ec{x}) := \left\{ egin{array}{ll} \psi(ec{x}) & ext{, falls } \operatorname{Time}_{
m I\!P}(ec{x}) \leq f(ec{x}) ext{ , und} \\ 0 & ext{, sonst,} \end{array}
ight.$$

ebenfalls rekursiv.

WS 2009/2010 26 WS 2009/2010 27

Eine Teilmenge $M \subseteq \mathbb{N}^k$ heißt *(primitiv) rekursiv*, falls die charakteristische Funktion χ_M (primitiv) rekursiv ist.

Eine Teilmenge $M\subseteq {\rm I\! N}$ heißt rekursiv aufzählbar, falls $M=\emptyset$ oder es gibt eine rekursive Funktion $f:{\rm I\! N}\to {\rm I\! N}$ derart, dass $M=f({\rm I\! N})$. Analog nennen wir $M\subseteq {\rm I\! N}^k$ rekursiv aufzählbar, falls $c^k(M)$ rekursiv aufzählbar ist.

Folgerung 5.4: Jede rekursive Menge ist rekursiv aufzählbar.

Folgerung 5.5: $lst \emptyset \neq M \subseteq \mathbb{N}^k$ rekursiv aufzählbar, so gibt es rekursive Funktionen f_1, \ldots, f_k derart, dass $M = \{(f_1(t), \ldots, f_k(t)) : t \in \mathbb{N}\}.$

WS 2009/2010 28

Logik und Berechenbarkeit

5. Partiell-rekursive Funktionen

Eine Menge G_{ψ} heißt *Graph* einer k-stelligen partiellen Fumktion $\psi: \mathbb{N}^k \to \mathbb{N}: \Longleftrightarrow$

$$\begin{array}{cccc} \mathbf{G}_{\Psi} & \subseteq & \mathrm{I\!N}^{k+1} & \text{und} \\ \\ (x_1,\dots,x_k,y) \in \mathbf{G}_{\Psi} & \longleftrightarrow & \psi(x_1,\dots,x_k) = y \; . \end{array}$$

Folgerung 5.9: Der Graph einer (primitiv) rekursiven Funktion ist (primitiv) rekursiv.

Satz 5.10: Der Graph G_{ψ} einer partiellen Funktion $\psi : \mathbb{N}^k \to \mathbb{N}$ ist genau dann primitiv-rekursiv darstellbar, wenn ψ partiell-rekursiv ist.

Wir nennen eine Menge $M \subseteq \mathbb{N}^k$ primitiv-rekursiv darstellbar, falls es eine primitiv-rekursive Funktion g mit

$$M = \{(x_1, ..., x_k) : \exists a (a \in \mathbb{N} \land g(x_1, ..., x_k, a) = 0)\}$$
 gibt.

Satz 5.6: Eine nichtleere Menge $M \subseteq \mathbb{IN}^k$ ist genau dann primitiv-rekursiv darstellbar, wenn es eine primitiv-rekursive Funktion f gibt, die $c^k(M)$ aufzählt.

Folgerung 5.7: Jede primitiv-rekursive Menge ist primitiv-rekursiv darstellbar.

Folgerung 5.8: Eine Menge $M \subseteq \mathbb{N}^k$ ist genau dann primitiv-rekursiv darstellbar, wenn es ein $m \in \mathbb{N}$ und eine primitiv-rekursive Funktion $g \in \mathcal{F}^{k+m}$ derart gibt, daß

$$M = \{(x_1, \ldots, x_k) : \exists a_1 \ldots \exists a_m (g(x_1, \ldots, x_k, a_1, \ldots, a_m) = 0)\}.$$

WS 2009/2010 29

Logik und Berechenbarkeit

5. Partiell-rekursive Funktionen

Hilfssatz 5.11 (Gödel): Es gibt eine primitiv-rekursive Funktion Γ mit der Eigenschaft

$$\forall n \forall (a_0, \dots, a_n) (n, a_0, \dots a_n \in \mathbb{IN} \rightarrow \exists z (z \in \mathbb{IN} \land \forall i (i \leq n \rightarrow \Gamma(z, i) = a_i))) .$$

Beispiel: $\Gamma(z,i) = \exp(z,i)$ für $z = \prod_{i=o}^n p(i)^{a_i}$

Folgerung 5.12 (Normalformsatz von Kleene): Zu jeder partiell-rekursiven Funktion $\psi: \mathbb{I}\!\mathbb{N}^k \to \mathbb{I}\!\mathbb{N}$ gibt es eine primitiv-rekursive Funktion $h_\psi: \mathbb{I}\!\mathbb{N}^{k+1} \to \mathbb{I}\!\mathbb{N}$ derart, daß

$$\psi(x_1,...,x_k) = \ell(\mu z(h_{\psi}(x_1,...,x_k,z)=0))$$
.

(Hierbei sei ℓ die linke Umkehrfunktion der Cantor-Numerierung.)

30

Folgerung 5.13:

- (a) Definitions- und Wertebereich partiell-rekursiver Funktionen sind primitiv-rekursiv darstellbar.
- (b) Jede nichtleere rekursiv aufzählbare Menge kann schon durch eine primitiv-rekursive Funktion aufgezählt werden.

Eine partiell-rekursive Funktion $\Phi^{(k)}: \mathbb{N}^{k+1} \to \mathbb{N}$ ist eine *effektive Numerierung* einer Klasse \mathcal{K} von k-stelligen Funktionen : \iff

- (a) Für jedes $i \in \mathbb{N}$ ist die Funktion $f_i(x_1,\dots,x_k) := \Phi(i,x_1,\dots,x_k)$ eine Funktion aus \mathcal{K} , und
- (b) für jede Funktion $g \in \mathcal{K}$ gibt es eine Nummer $i \in \mathbb{N}$ derart, dass $g(x_1, \dots, x_k) = \Phi(i, x_1, \dots, x_k)$.

WS 2009/2010 32

Logik und Berechenbarkeit

5. Partiell-rekursive Funktionen

Folgerung 5.19: Für jedes $k \ge 1$ gibt es eine effektive Numerierung $\Gamma^{(k)}$ aller k-stelligen partiell-rekursiven Funktionen.

Folgerung 5.20: Es gibt k-stellige partiell-rekursive Funktionen, die nicht zu (voll definierten) rekursiven Funktionen erweitert werden können.

Lemma 5.21: Es seien $\varphi \in \mathcal{P}$ und $dom(\varphi)$ rekursiv. Dann gibt es eine rekursive Funktion f mit $\varphi \subseteq f$.

Folgerung 5.22: Es gibt rekursiv aufzählbare nichtrekursive Mengen.

Folgerung 5.23: Es sei $k \ge 1$. Die Menge $\{M: M \subseteq \mathbb{N}^k \land M \text{ ist rekursiv aufzählbar}\}$ ist nicht abgeschlossen bezüglich Komplement.

WS 2009/2010 34

Satz 5.14: Es gibt eine effektive Numerierung aller einstelligen primitiv-rekursiven Funktionen.

Satz 5.15: Es gibt keine effektive Numerierung aller einstelligen rekursiven Funktionen.

Folgerung 5.16: Für jedes $k \ge 1$ gibt es eine effektive Numerierung $\Phi^{(k)}$ aller k-stelligen primitiv-rekursiven Funktionen.

Folgerung 5.17: Für jedes $k \ge 1$ gibt es eine k-stellige rekursive nicht primitiv-rekursive Funktion.

Folgerung 5.18: Es gibt rekursive nicht primitiv-rekursive Teilmengen von \mathbb{IN}^k (k > 0).

WS 2009/2010 33