Institut für Informatik

Martin-Luther-Universität Halle-Wittenberg Prof. Dr. L. Staiger Dipl.-Math. S. Schwarz D-06120 HALLE (Saale) Von-Seckendorff-Platz 1 Tel. 0345/55 24714 Tel. 0345/55 24715

9. Übung zur Vorlesung "Grundlagen der Mathematik" Wintersemester 2003/04 16. Dezember 2003

Abgabe: Donnerstag, den 8. Januar 2004 vor der Vorlesung

Achtung: Alle Lösungen sind zu begründen bzw. zu beweisen!

Aufgabe 9.1: (5 Punkte)

Zeigen Sie, daß in jedem endlichen planaren Graphen (V, E) eine Ecke $v \in V$ vom Grad ≤ 5 existiert!

Aufgabe 9.2: (4 Punkte)

Bestimmen Sie für die Graphen C_4 , C_5 , M_3 (siehe Aufgabe S8.2) und Q_3 (siehe Aufgabe S9.1) den maximalen Knotengrad Δ , die chromatische Zahl χ und die Größe ω der maximalen Clique!

Aufgabe 9.3: (4 Punkte)

Zu jeder Zahl $n \in \mathbb{N} \setminus \{0,1\}$ wird die Relation $\equiv_n \subseteq \mathbb{Z} \times \mathbb{Z}$ definiert:

 $a \equiv_n b$ gilt genau dann, wenn $n \mid (a - b)$.

Zeigen Sie, daß für jede Zahl $n \in \mathbb{N} \setminus \{0, 1\}$ die Relation \equiv_n eine Kongruenzrelation auf der Algebra $(\mathbb{Z}, +, \cdot, 0, 1)$ ist!

Aufgabe 9.4: (4 Punkte)

Zu jeder Zahl $n \in \mathbb{N} \setminus \{0,1\}$ werden die Menge $\mathbb{Z}_n = \{0,\ldots,n-1\}$ und die Funktion mod $n : \mathbb{Z} \longrightarrow \mathbb{Z}_n$ definiert, die jeder Zahl $a \in \mathbb{Z}$ die kleinste nichtnegative Zahl $a \mod n = b$ zuordnet, für die $a \equiv_n b$ gilt.

Außerdem werden die folgenden Funktionen definiert:

Zeigen Sie, daß die Abbildung mod n für jede Zahl $n \in \mathbb{N} \setminus \{0, 1\}$ ein Homomorphismus von $(\mathbb{Z}, +, \cdot, 0, 1)$ nach $(\mathbb{Z}_n, +_n, \cdot_n, 0, 1)$ ist!

Selbsttestaufgaben (ohne Bewertung)

Selbsttest-Aufgabe S9.1:

Der Graph $Q_n = (V, E)$ mit $V = \{0, 1\}^n$, in dem genau dann $\{u, v\} \in E$ gilt, wenn sich die Wörter $u = u_1, u_2, \ldots, u_n$ und $v = v_1 v_2 \ldots v_n$ an genau einer Position $i \in \{1, \ldots, n\}$ unterscheiden, wird *n*-dimensionaler Würfel genannt.

- (a) Zeichen Sie Q_n für alle $n \leq 4$.
- (b) Wieviele Ecken und Kanten hat der Q_n ?
- (c) Für welche n existiert ein Eulerkreis im Q_n ?
- (d) Für welche n ist der Q_n ein paarer Graph?
- (e) Bestimmen Sie die chromatische Zahl $\chi(Q_n)$!
- (f) Bestimmen Sie die maximale Größe $\omega(Q_n)$ einer Clique im $Q_n!$

Selbsttest-Aufgabe S9.2:

Zeigen Sie, daß das Komplement eines planaren Graphen mit mindestens 11 Knoten nicht planar ist!

Selbsttest-Aufgabe S9.:

Für welche Zahlen $n \in \mathbb{N}$ gelten die beiden Kongruenzen 27 $\equiv_n 5$ und $100 \equiv_n 1$?

Selbsttest-Aufgabe S9.4:

Zeigen Sie:

- (a) für gerade Zahlen $a \in \mathbb{Z}$ gilt $a^2 \equiv_4 0$,
- (b) für ungerade Zahlen $a \in \mathbb{Z}$ gilt $a^2 \equiv_8 1$.

Die Folien und weitere Hinweise zur Vorlesung finden Sie online unter

http://nirvana.informatik.uni-halle.de/~theo/Grundl/grundl.html.

Die Übungsaufgaben finden Sie unter

http://nirvana.informatik.uni-halle.de/~theo/Grundl/uebungen.html.

Email: {staiger, schwarzs}@informatik.uni-halle.de