Institut für Informatik

Martin-Luther-Universität Halle-Wittenberg Prof. Dr. L. Staiger Dipl.-Math. S. Schwarz D-06120 HALLE (Saale) Von-Seckendorff-Platz 1 Tel. 0345/55 24714 Tel. 0345/55 24715

7. Übung zur Vorlesung "Grundlagen der Mathematik" Wintersemester 2003/04 25. November 2003

Abgabe: Dienstag, den 2. Dezember 2003 vor der Vorlesung

Achtung: Alle Lösungen sind zu begründen bzw. zu beweisen!

Aufgabe 7.1:

(1+3 Punkte)

- (a) Zeigen sie, daß in jedem endlichen ungerichteten schlichten schlingenfreien Graphen (mit mindestens zwei Ecken) zwei Ecken von gleichem Grad existieren.
- (b) Bestimmen Sie alle nichtisomorphen endlichen ungerichteten schlichten schlingenfreien Graphen, die genau zwei Knoten vom gleichen Grad enthalten.

Aufgabe 7.2: (5 Punkte)

Für welche Graphen (P, B, I) ist die duale Inzidenzstruktur (B, P, \hat{I}) wieder ein Graph? Zeichnen Sie die zu den Graphen P_3 , C_4 und K_5 dualen Graphen!

Aufgabe 7.3: (4 Punkte)

Beweisen Sie, daß ein Graph (P,B,I) genau dann zusammenhängend ist, wenn für jede beliebige Zerlegung der Eckenmenge P in zwei disjunkte nichtleere Mengen U und V zwei Ecken $u \in U$, $v \in V$ und eine Kante $b \in B$ existieren, so daß $(u,b) \in I$ und $(v,b) \in I$ gilt.

Aufgabe 7.4: (3 Punkte)

Ein Graph, in welchem alle Knoten denselben Grad n haben, heißt n-regulär. Geben Sie jeweils als Zeichnung und als Inzidenzstruktur an:

- (a) einen 4-regulären Graphen mit möglichst wenigen Ecken,
- (b) einen schlingenfreien 4-regulären Graphen mit möglichst wenigen Ecken,
- (c) einen schlichten schlingenfreien 4-regulären Graphen mit möglichst wenigen Ecken.

Selbsttestaufgaben (ohne Bewertung)

Selbsttest-Aufgabe S7.1:

Zu einem schlichten schlingenfreien Graphen (P, B, \in) ist durch die Kantenmenge $B' = \binom{P}{2} \setminus B$ der komplementäre Graph (P, B', \in) definiert. Zeichnen Sie die zu den Graphen P_4 , C_4 , K_4 und C_5 komplementären Graphen!

Selbsttest-Aufgabe S7.2:

Beweisen Sie die folgende Aussage:

Werden aus einem Baum ein Knoten vom Grad 1 und alle inzidenten Kanten gelöscht, so ist der verbleibende Graph ein Baum.

Selbsttest-Aufgabe S7.3:

Zeichnen Sie alle nichtisomorphen Bäume mit höchstens 6 Ecken!

Selbsttest-Aufgabe S7.4:

Für welche Bäume existiert zwischen je zwei Blättern ein Pfad ungerader Länge?

Die Folien und weitere Hinweise zur Vorlesung finden Sie online unter

http://nirvana.informatik.uni-halle.de/~theo/Grundl/grundl.html.

Die Übungsaufgaben finden Sie unter

http://nirvana.informatik.uni-halle.de/~theo/Grundl/uebungen.html.

Email: {staiger, schwarzs}@informatik.uni-halle.de