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ω-automata

• Circuit Design
• Monadic Second-Order Logic

• Verification
• Temporal Logics
• Fixed-Point Logics
• Model Checking

• Symbolic Dynamics
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Model Checking: Automata-theoretic properties

Quotation from a recent paper by DIEKERT, MUSCHOLL and
WALUKIEWICZ

The common theme in automata on infinite words is that finite state devices
serve to classify ω-regular properties. The most prominent classes are:

Deterministic properties: there exists a DBA.a

Deterministic properties which are simultaneously co-deterministic: there
exists a DWA.

Safety properties: there exists a DBA where all states are final.

Cosafety properties: the complement is a safety property.

Liveness properties: there exists a BA where from all states there is a path
to some final state lying in a strongly connected component.

Monitorable properties: there exists a monitor.”

adeterministic BÜCHI automaton
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Relations to Topology

Correspondence to topological properties

Safety: closed sets = F.

Co-safety: open sets = G.

Liveness: dense = closure is the whole space.

Deterministic: Gδ

Co-deterministic: Fσ

Deterministic and simultaneously co-deterministic: Gδ∩Fσ

Monitorable: the boundary is nowhere dense.

=⇒
Fair Correctness [Varacca and Völzer]

The set of runs which satisfy the specification is large from a
topological point of view.
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Notation: Strings and Languages

Finite Alphabet X = {0, . . . , r −1}, cardinality |X |= r

Finite strings (words) w = x1 · · ·xn ∈ {0,1}∗, xi ∈ {0,1}

Length |w |= n

Languages W ⊆ X ∗

Infinite strings (ω-words) ξ = x1 · · ·xn · · · ∈ X ω

Prefixes of infinite strings ξ�n ∈ X ∗,
∣∣ξ�n∣∣= n

pref(ξ) = {ξ�n : n ∈ IN}

ω-Languages F ⊆ X ω
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X ω as CANTOR space

Metric: ρ(η,ξ) := inf{r−|w | : w ∈ pref(η)∩pref(ξ)}
Balls: w ·X ω = {η : w ∈ pref(η)}= {η : w @ η}

Diameter: diamw ·X ω = r−|w |

diamF = inf{r−|w | : F ⊆ w ·X ω}
Open sets: W ·X ω =

⋃
w∈W w ·X ω

Closure: (Smallest closed set containing F )

C (F) = {ξ : pref(ξ)⊆ pref(F)}

Fact

F ⊆ X ω is closed if and only if pref(ξ)⊆ pref(F) implies ξ ∈ F.
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{0,1}ω as a Tree
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The BOREL-Hierarchy: First Levels

Open Sets: W ·X ω

Closed Sets: F = C (F), F = X ω \W ·X ω [F – ferme, fr.]

Fσ-Sets:
⋃

i∈IN
Fi (Fi closed) [ σ≈ ∑ – sum]

Gδ-Sets:
⋂

i∈IN
Ei (Ei open),

⋂
i∈IN

Wi ·X ω

[ δ – Durchschnitt, german for intersection]

=⇒
Example Closure properties

Open sets 0∗1 ·X ω ∩
⋃

Closed sets {0ω} ∪
⋂

Fσ-sets {0,1}∗ ·0ω ∩
⋃

i∈IN

Gδ-sets (0∗1)ω ∪
⋂

i∈IN
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The BOREL-Hierarchy of ω-languages

...
↖ ↗

Fσδ ∩ Gδσ

↑
Bool(Gδ)

↗ ↖
{F : X ω \F ∈Gδ}= Fσ Gδ

↖ ↗
Fσ ∩ Gδ

↑
Bool(G)

↗ ↖
{F : X ω \F ∈G}= F G open sets

↖ ↗
F∩G
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Automata on ω-words: BÜCHI-automata

A = (Q,∆,q0,Qfin) is a BÜCHI-Automaton over X :⇐⇒
1 Q is a non-empty set (states)

2 q0 ∈ Q (initial state)

3 ∆⊆ Q×X ×Q (transitions)

4 Qfin ⊆ Q (final states)

=⇒

– A is a finite automaton, if Q is finite.

– A is a deterministic automaton, if (q,x ,q′),(q,x ,q′′) ∈∆
implies q′ = q′′.
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BÜCHI-automata: Acceptance

Run on ξ: (qi)i∈IN with ∀i ≥ 0 : (qi ,ξ(i + 1),qi+1) ∈∆

q0 q1 q2 qi−1 qi

↘ ↑ ↘ ↑ ·· · ↑ ↘ ↑ ↘ ·· ·
ξ(1) ξ(2) ξ(i−1) ξ(i)

=⇒

A accepts ξ: ∃(qi)i∈IN ∀i ≥ 0 : (qi ,ξ(i + 1),qi+1) ∈∆ ∧
∃∞k : qk ∈ Qfin

A accepts F : F =
{

ξ : A accepts ξ
}
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Automata on ω-words

Other types of ω-automata

• MULLER-automata

• RABIN-automata

• STREETT-automata

- The difference consists in acceptance conditions.

- Deterministic variants are as powerful as non-deterministic
BÜCHI-automata.
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Automata on ω-words: MULLER-automata

A = (Q,∆,q0,T ) is a MULLER-Automaton over X :⇐⇒
1 Q is a non-empty set (states)

2 q0 ∈ Q (initial state)

3 ∆⊆ Q×X ×Q (transitions)

4 T ⊆ 2Q (table of final sets)

=⇒

A accepts ξ: ∃(qi)i∈IN ∀i ≥ 0 : (qi ,ξ(i + 1),qi+1) ∈∆ ∧
{q : ∃∞k(qk = q)} ∈ T

A accepts F : F =
{

ξ : A accepts ξ
}



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

Regular ω-languages

Definition (Regular ω-language)

An ω-language F ⊆ X ω is called regular if and only if F is accepted
by a finite automaton

Theorem (BÜCHI 1962)

1 An ω-language F ⊆ X ω is regular if and only if

F =
⋃n

i=1
Wi ·V ω

i

for some n ∈ IN and regular languages Wi ,Vi ⊆ X ∗.

2 The set of regular ω-languages over X is closed under Boolean
operations.
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Ultimately Periodic ω-words

Definition (Ultimately periodic ω-words)

Ult := {w · vω : w ,v ∈ X ∗∧ v 6= e} the set of ultimately periodic
ω-words.

Theorem (BÜCHI 1962)

1 Every non-empty regular ω-language contains an ultimately
periodic ω-word.

2 Let E ,F ⊆ X ω be regular. Then
E = F ⇐⇒ E ∩Ult = F ∩Ult.

Lemma

If F ⊆ X ω is regular then its prefix language pref(F)⊆ X ∗ and its
closure C (F) are also regular, and if W ⊆ X ∗ is a regular language,
then W ·F is regular.
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Automata and Topology: Deterministic ω-languages

Theorem (Landweber 1969)

An ω-language F ⊆ X ω is accepted by a finite deterministic
BÜCHI-automaton (DBA) if and only if F is regular and a Gδ-set.
[F is deterministic regular.]

=⇒

Example ( Two automata accepting F = (0∗1)ω (Muller 1963) )

��
��

q0 ��
��
��
��

q1 ��
��

s0 ��
��
��
��

s1

Qs

1

Qs

1

Qk 0Qk

1

Qk 0

��0 ��0 ��1
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Automata and Topology: Closed ω-languages

Definition (Trim Automaton)

A trim automaton is a partial automaton A = (X ,Q,∆,q0,Qfin) with
Qfin = Q.

Lemma

An ω-language F ⊆ X ω is accepted by a finite (deterministic) trim
automaton (TA) if and only if F is regular and closed in CANTOR

space.

Lemma

An ω-language F ⊆ X ω is regular and closed in CANTOR space if
and only if pref(F) is a regular language and
F = {ξ : pref(ξ)⊆ pref(F)}.
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Weak BÜCHI Automata: Co-deterministic ω-languages

Definition (Weak BÜCHI automata)

An automaton A = (X ,Q,∆,q0,Qfin) is referred to as a weak BÜCHI

automaton provided Qfin is a union of strongly connected
components.

Theorem (St. and Wagner 1974, Wagner 1979)

F ⊆ X ω is accepted by a finite weak BÜCHI automaton (NWA) if and
only if F is regular and an Fσ-set.

=⇒
Example ( An automaton accepting {0,1}∗ ·0ω )

��
��

q0 ��
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q1
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Weak BÜCHI Automata and BOREL hierarchy

Theorem (St. and Wagner 1974, Wagner 1979)

1 F ⊆ X ω is accepted by a finite deterministic weak BÜCHI

automaton (DWA) if and only if F is regular and simultaneously
an Fσ- and a Gδ-set.

2 If F ⊆ X ω is regular and simultaneously an Fσ- and a Gδ-set
then it is a Boolean combination of open regular ω-languages.

=⇒
Theorem (St. and Wagner 1974, Wagner 1979)

Given a deterministic BÜCHI-automaton, it is decidable in polynomial
time whether the accepted ω-language is simultaneously an Fσ- and
a Gδ-set.



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

The BOREL-Hierarchy of Regular ω-languages

Bool(GR
δ

) (= NBA)
↗ ↖

(NWA =) FR
σ GR

δ
(= DBA)

↖ ↗
Bool(GR) = FR

σ ∩ GR
δ

(= DWA)
↗ ↖

(TA =) FR GR

↖ ↗
F∩G
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MULLER-automata: Topology and Tables

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)

Let A = (Q,∆,q0,T ) be a MULLER-automaton and F be accepted
by A .

1 If A is deterministic and T is upwardly closed
(Q′ ∈ T ∧Q′ ⊆ Q′′→ Q′′ ∈ T ) then F ∈Gδ .

2 If T is downwardly closed (Q′ ∈ T ∧Q′ ⊇ Q′′→ Q′′ ∈ T ) then
F ∈ Fσ .

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)

Let F be a regular ω-language.

1 If F ∈Gδ then there is a deterministic MULLER-automaton
A = (Q,∆,q0,T ) with upwardly closed T accepting F .

2 If F ∈ Fσ then there is a deterministic MULLER-automaton
A = (Q,∆,q0,T ) with downwardly closed T accepting F .
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Characterisation by Regular Languages

CLASS REPRESENTATION COMMENT

1. GR W ·X ω W regular (and prefix-free)

2. FR {ξ : pref(ξ)⊆W} W regular

3. FR
σ ∩GR

δ

n⋃
i=1

Wi ·Fi
Fi ⊆ X ω closed, Wi ,Fi regular
and Wi prefix-free

4. FR
σ

n⋃
i=1

Wi ·Fi Fi ⊆ X ω closed, Wi ,Fi regular

5. GR
δ

n⋃
i=1

Wi ·V ω
i Wi ,Vi regular and prefix-free

6. regular
n⋃

i=1
Wi ·V ω

i Wi ,Vi regular (and Vi prefix-free)
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NERODE Right Congruence

Definition

u ∼W v :⇔ ∀w(w ∈ X ∗→ (u ·w ∈W ←→ v ·w ∈W ))

[v ]∼W := {u : u ∼W v} [equivalence classes]

Ind(∼W ) := |{[v ]∼W : v ∈ X ∗}|

Theorem (folklore)

W ⊆ X ∗ is regular if and only if Ind(∼W ) < ∞.
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Left Derivative of Languages and ω-languages

Definition (Left derivative)

Let B ⊆ X ∗∪X ω and w ∈ X ∗.
B/w := {η : w ·η ∈ B}.

Property

B/v = B/w ⇐⇒ v ∼B w and
∣∣{B/w : w ∈ X ∗}

∣∣= Ind(∼B)

=⇒
Definition (Associated automaton)

AB = ({B/w : w ∈ X ∗},∆B,B/e) where
∆B = {(B/w ,x ,B/wx) : w ∈ X ∗∧ x ∈ X}

Theorem (folklore)

If W ⊆ X ∗ then AW = ({W/v : v ∈ X ∗},∆B,B/e,{W/u : u ∈W}) is
a minimal deterministic automaton accepting W.
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NERODE Right Congruence for ω-languages

Definition: u ∼F v :⇐⇒ ∀ξ(ξ ∈ X ω→ (u ·ξ ∈ F ←→ v ·ξ ∈ F))

Theorem (Trakhtenbrot 1962, Jürgensen and Thierrin 1983)

1 [Tr] If F ⊆ X ω is regular, then ∼F has finite index (Ind(∼F ) < ∞).

2 [Tr] If Ind(∼F ) < ∞ and F ⊆ X ω is closed then F is regular.

3 [JT] There are 22ℵ0
ω-languages E with Ind(∼E ) = 1.

=⇒
Theorem (1983)

Let F ⊆ X ω be in Fσ∩Gδ and Ind(∼F ) < ∞. Then

1 F is already regular and

2 F is accepted by its associated automaton AF .



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

Minimisation of ω-automata

Lemma

If F ⊆ X ω then every deterministic BÜCHI- (MULLER-)automaton
accepting F has AF as a homomorphic image.

Corollary

If a deterministic (co-)BÜCHI- (MULLER-)automaton A accepts
F ⊆ X ω then A has at least Ind(∼F ) states.

=⇒
Fact

1 There are regular ω-languages F ⊆ X ω having more than one
minimal-state BÜCHI- (MULLER-)automaton A accepting F .

2 There are regular ω-languages F ⊆ X ω having exactly one
minimal-state BÜCHI- (MULLER-)automaton A accepting F but
not being accepted by AF .



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

Minimisation of ω-automata: n logn-algorithm

Theorem (Löding 2001)

There is an algorithm minimising an n-state deterministic weak
BÜCHI automaton accepting an ω-language F in O(n logn) time to
the associated automaton AF .
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Small and Large Sets in CANTOR Topology

dense: C (F) = X ω, pref(F) = X ∗

nowhere dense: w ·X ω 6⊆ C (F) for all w ∈ X ∗

The closure does not contain an open set.

First BAIRE category
or meagre

:
⋃

i∈IN Fi (Fi nowhere dense)

Second BAIRE category: not of first BAIRE category

residual: X ω \F is of first BAIRE category
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Small and Large Sets

Topology Closure properties

very large F is residual superset
⋂

i∈IN

large F is of 2nd BAIRE category superset –

small F is of 1st BAIRE category subset
⋃

i∈IN

very small F is nowhere dense subset ∪
=⇒

Logical description Example

very large infinitely many ones (0∗1)ω

large 0(0∗1)ω∪1{0,1}∗ ·0ω

small finitely many ones {0,1}∗ ·0ω

very small ≤ n ones
⋃n

i=0(0∗1)i ·0ω
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Small and Large Sets: BOREL classes

Lemma

In every complete metric space (X ,ρ) the following are true.

1 Every nowhere dense set is contained in a closed nowhere
dense set.

2 Every set of 1st BAIRE category is a subset of an Fσ-set of
1st BAIRE category.

3 Every Gδ-set of 1st BAIRE category is nowhere dense.

4 If M is a Gδ-set then Cρ(M)\M is a set of 1st BAIRE category.

5 Every residual set contains a residual Gδ-set.

6 Every residual set is dense.
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Small Regular ω-languages

Example (Forbidden subwords)

E = X ω \X ∗ · v ·X ω is nowhere dense because E ∩w · v ·X ω = /0 for
all w ∈ X ∗.

=⇒
Theorem (1976)

Let F ⊆ X ω be a regular ω-language.

1 F is nowhere dense if and only if there is a v ∈ X ∗ such that
F ⊆ X ω \X ∗ · v ·X ω.

2 F is of 1st BAIRE category if and only if
F ⊆

⋃
v∈X ∗(X ω \X ∗ · v ·X ω).
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Visualisation: r -adic Expansion

Y = {0,1, . . . , r −1}

0.η ∈ [0,1]⊆ IR νr←− η ∈ Y ω

(0.proj1 ξ, . . . ,0.projd ξ) ∈ [0,1]d
νr←− ξ ∈ (Y × . . .×Y︸ ︷︷ ︸

d−times

)ω

Example: r = 2
3
4

ν2←−
{

0.11000...
0.10111...

(xβ,yβ) ∈ [0,1]2
ν2←− β ∈ {(0,0), . . . ,(1,1)}ω

xβ = 0.x1x2x3 . . .

yβ = 0.y1y2y3 . . .

ν2←− β =

(
x1

y1

)(
x2

y2

)(
x3

y3

)
· · ·
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Visualisation in the Unit Square [0,1]2

Notation (r = 2): X := {(0,0),(0,1),(1,0),(1,1)}
Quadrant in [0,1]2: Q(0,0)(1,1)(1,0) = ν2((0,0)(1,1)(1,0) ·X ω)

(0,1) (1,1)

(0,0) (1,0)



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

Visualisation: A Regular Nowhere Dense Set

w = (1,0) · (0,0)

v = (0,0) · (1,1) · (1,1)

u = (1,1) · (0,1) · (1,0) · (0,1)

S1 = (0,1) ·S3 ∪ (0,0) ·S1 ∪ (1,1) ·S1 ∪ (1,0) ·S2

S2 = (0,1) ·S2 ∪ (0,0) ·S1 ∪ (1,1) ·S3 ∪ (1,0) ·S1

S3 = (0,1) ·S1 ∪ (1,0) ·S3
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BERNOULLI Measures µ̄ on X ω

BERNOULLI measure on X ∗: µ : X ∗→ [0,1]

é ∑x∈X µ(x) = 1, µ(x) > 0;

é µ(w · v) := µ(w) ·µ(v)

=⇒
Property

If W ⊆ X ∗ is prefix-free then ∑w∈W µ(w)≤ 1

=⇒

Definition (BERNOULLI measure on X ω)

Measure on balls: µ̄(w ·X ω) := µ(w)

Measure on open sets: If W ⊆ X ∗ is prefix-free then
µ̄(W ·X ω) := ∑w∈W µ(w)
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Comparison of Small and Large Sets

Measure [µ(X ω) = 1] Topology

very large µ̄(F) = 1 F is residual

large µ̄(F) > 0 or F is of 2nd BAIRE category
F is not measurable

small µ̄(F) = 0 F is of 1st BAIRE category

very small µ̄(C (F)) = 0 =⇒ F is nowhere dense
=⇒
Proposition (Incomparability (cf. OXTOBY: Measure and Category ))

1 There is a nowhere dense set F ⊆ X ω such that µ̄(F) > 0.

2 There is a set of 1st BAIRE category such that µ̄(F) = 1.

There is a residual set E ⊆ X ω such that µ̄(E) = 0.
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Probabilistic Arguments

Bad news for probabilistic arguments

Example

The set of BERNOULLI- (BOREL-normal) sequences over X is of
1st BAIRE category.
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An Example: Łukasiewicz Language

Defining equation: Ł = 0 ∪ 1 ·Ł3

µ(Ł) = µ(0) + µ(1) ·µ(Ł3)
=⇒

1 Ł is a simple deterministic context-free language, hence
prefix-free.

Ô µ(Łn) = µ(Ł)n

2 Eq. (2) µ(Ł) = (1−µ(1)) + µ(1) ·µ(Ł3) has the positive solutions

t0 = 1 and t1 =−1
2 +
√

1
µ(1) −

3
4 .

3 µ(Ł) is the smallest positive solution of Eq. (2).

4 µ(Ł) =
√

5−1
2 < 1 for µ(1) = 1

2 and µ(Ł) = 1 for µ(1)≤ 1
3 .

Ô µ̄(
⋂

n∈IN Łn ·X ω) =

{
0 for µ(1) = 1/2 , and
1 for µ(1)≤ 1/3

5
⋂

n∈IN Łn ·X ω is a Gδ-set and dense in {0,1}ω, thus its
complement is of 1st BAIRE category.
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Topology and Measure in CANTOR space

Theorem (1976)

Let µ : X ∗→ (0,1) be a BERNOULLI measure and let F ⊆ X ω be a
regular ω-language.
Then F is of 1st BAIRE category if and only if µ̄(F) = 0.

=⇒
Proof Scheme: Induction on BOREL CLASSES

closed F is nowhere dense if and only if µ̄(F) = 0.

Fσ-sets F is a countable union of closed regular ω-languages.

Gδ-sets C (F) is the union of F and C (F)\F , where C (F)\F
is a regular ω-language in Fσ of 1st BAIRE category.

general F is a countable union of regular ω-languages in Gδ.
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Balanced Measures

Definition

A finite measure µ̄ on X ω is called balanced if the following holds
true.

∃c > 0 ∀w ∈ X ∗∀x ∈ X : µ̄(wx ·X ω) > c · µ̄(w ·X ω) or

µ̄(wx ·X ω) = 0

Definition (Support)

Let µ̄ be a finite measure on X ω.
The smallest closed set F with µ̄(F) = µ̄(X ω) is referred to as the
support supp(µ̄) of µ̄.
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Relativisation: Nowhere dense sets

Definition (Relative density)

Let S,F ⊆ X ω, S 6= /0. We call F nowhere dense in S if for every
non-empty ball S∩w ·X ω in S there is a non-empty sub-ball
S∩w · v ·X ω disjoint with F .

=⇒
Lemma (1998)

Let S ⊆ X ω be a regular ω-language.
A regular ω-language F ⊆ X ω is nowhere dense in S if and only if for
every w ∈ pref(S) there is a v ∈ X ∗ such that

1 |v |< Ind(∼F ) · Ind(∼S) + 1 and

2 and w · v ∈ pref(S) and w · v /∈ pref(F).

Remark

Observe that S∩w ·X ω 6= /0 if and only if w ∈ pref(S).
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Visualisation: ω-language S

S1 = (0,1) ·S3 ∪ (0,0) ·S1 ∪ (1,1) ·S1 ∪ (1,0) ·S2

S2 = (0,1) ·S2 ∪ (0,0) ·S1 ∪ (1,1) ·S3 ∪ (1,0) ·S1

S3 = (0,1) ·S1 ∪ (1,0) ·S3
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Visualisation: F0 nowhere dense in S

S1 = (0,1) ·S3 ∪ (0,0) ·S1 ∪ (1,1) ·S1 ∪ (1,0) ·S2

S2 = (0,1) ·S2 ∪ (0,0) ·S1 ∪ (1,1) · /0 ∪ (1,0) ·S1

S3 = (0,1) ·S1 ∪ (1,0) ·S3
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Visualisation: F1 nowhere dense in S

S1 = (0,1) ·S3 ∪ (0,0) ·S1 ∪ (1,1) ·S1 ∪ (1,0) ·S2

S2 = (0,1) · /0 ∪ (0,0) ·S1 ∪ (1,1) ·S3 ∪ (1,0) ·S1

S3 = (0,1) ·S1 ∪ (1,0) ·S3
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Visualisation: F2 nowhere dense in S

S1 = (0,1) ·S3 ∪ (0,0) ·S1 ∪ (1,1) ·S1 ∪ (1,0) ·S2

S2 = (0,1) ·S2 ∪ (0,0) ·S1 ∪ (1,1) ·S3 ∪ (1,0) · /0
S3 = (0,1) ·S1 ∪ (1,0) ·S3
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Relativisation: Inhomogeneity

Example (Inhomogeneity)

For S = 0 · (0 ·X)ω∪1 ·X ω we have:
F1 = 0 · (0 ·X)ω is of 2nd BAIRE category in S, and
F2 = 1 · (0 ·X)ω is nowhere dense in S.
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Relativisation: Topology and Measure in CANTOR space

Theorem (St. 1998, Varacca and Völzer 2006)

Let S ⊆ X ω regular and closed and F ⊆ S be regular. Then the
following are equivalent.

1 F ist is of 1st BAIRE category in S.

2 There is a balanced finite measure µ̄ with support supp(µ̄) = S
such that µ̄(F) = 0.

3 µ̄(F) = 0 for all balanced finite measures µ̄ with support
supp(µ̄) = S.

=⇒
Corollary

Let S ⊆ X ω regular and closed. Then⋃
{F : F ⊆ S∧F is regular and nowhere dense in S}

is a null-set universal for all balanced finite measures µ̄ with support
supp(µ̄) = S.



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

References: Automata and Measure

Staiger, L.: Reguläre Nullmengen, Elektron. Informationsverarb.
Kybernet. EIK 12: 307–311 (1976).

Staiger, L.: Rich ω-words and monadic second-order arithmetic.
In M. Nielsen and W. Thomas, editors, Computer Science Logic
(Aarhus, 1997), Selected papers, LNCS 1414, Springer,
478–490 (1998).

Varacca, D. and Völzer, H.: Temporal logics and model checking
for fairly correct systems. In 21th IEEE Symposium on Logic in
Computer Science (LICS 2006), IEEE Computer Society,
389–398 (2006).



Outline Preliminaries Automata on ω-words Topology Measure Relativisation

What ω-automata cannot prove

ω-automata cannot prove that

1 there are sets in BOREL classes higher than Bool(Gδ),

2 there are sets in (Gδ∩Fσ)\Bool(G),

3 there are nowhere dense BERNOULLI non-nullsets,

4 there are BERNOULLI nullsets of 2nd BAIRE category,

5 there are sets which are BERNOULLI nullsets w.r.t. measure µ̄1

but not w.r.t. measure µ̄2

=⇒

but they are useful for proving largeness by probabilistic arguments.
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Thank you
=⇒
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