Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation

ω-automata: Topology and Measure

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg

Quantitative Logics and Automata, Leipzig December 1, 2015

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation
Outlir	าย				

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Preliminaries

Notation BOREL-Hierarchy

2 Automata on ω -words

Automata Regular ω-languages

O Topology

BOREL hierarchy Right Congruence Small and Large Sets

4 Measure

6 Relativisation

Balanced Measures Relative density What ω-automata cannot prove

Outline	Preliminaries	Automata on ω-words	Topology ००००००००००००००००००००	Measure 00000	Relativisation
ω-au	tomata				

- Circuit Design
 - Monadic Second-Order Logic
- Verification
 - Temporal Logics
 - Fixed-Point Logics
 - Model Checking
- Symbolic Dynamics

Made	ol Chaold	nau Automot	a theoretic proper	tion	
Outline	Preliminaries	Automata on ω -words	Topology	Measure	Relativisation

Model Checking: Automata-theoretic properties

Quotation from a recent paper by DIEKERT, MUSCHOLL and WALUKIEWICZ

The common theme in *automata on infinite words* is that finite state devices serve to classify ω -regular properties. The most prominent classes are:

Deterministic properties: there exists a DBA.^a

Deterministic properties which are simultaneously co-deterministic: there exists a DWA.

Safety properties: there exists a DBA where all states are final.

Cosafety properties: the complement is a safety property.

Liveness properties: there exists a BA where from all states there is a path to some final state lying in a strongly connected component.

Monitorable properties: there exists a monitor."

^adeterministic BÜCHI automaton

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation	
Rel	ations to T	opology				
	Corresponder	nce to topologica	l properties			
	Safety:	closed sets $= \mathbb{F}$				
	Co-safety:	$\text{open sets} = \mathbb{G}.$				
	Liveness: dense = closure is the whole space.					
	Deterministic	\mathbb{G}_{δ}				
	Co-determinis	stic: \mathbb{F}_{σ}				
	Deterministic	and simultaneou	usly co-deterministic: G	$\mathbb{F}_{\delta} \cap \mathbb{F}_{\sigma}$		
	Monitorable:	the boundary is	nowhere dense.			

\Rightarrow

Fair Correctness [Varacca and Völzer]

The set of runs which satisfy the specification is *large* from a topological point of view.

Outline	Preliminaries	Automata on ω-words	Topology ooooooooooooooooooooooo	Measure 00000	Relativisation
Notat	ion: Strir	ngs and Lang	guages		

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Finite Alphabet
$$X = \{0, ..., r-1\}$$
, cardinality $|X| = r$

Finite strings (words) $w = x_1 \cdots x_n \in \{0, 1\}^*, x_i \in \{0, 1\}$

Length |w| = n

Languages $W \subseteq X^*$

Infinite strings (ω -words) $\xi = x_1 \cdots x_n \cdots \in X^{\omega}$

Prefixes of infinite strings $\xi \upharpoonright n \in X^*$, $|\xi \upharpoonright n| = n$

$$\operatorname{pref}(\xi) = \{\xi \upharpoonright n : n \in \mathbb{N}\}$$

 ω -Languages $F \subseteq X^{\omega}$

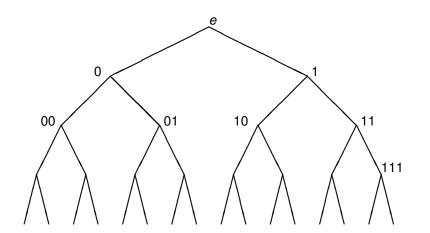
Outline	Preliminaries	Automata on ω-words	Topology occocococococococococo	Measure 00000	Relativisation
X ^ω a	s Canto	R space			

Metric: $\rho(\eta, \xi) := \inf \{ r^{-|w|} : w \in \operatorname{pref}(\eta) \cap \operatorname{pref}(\xi) \}$ Balls: $w \cdot X^{\omega} = \{ \eta : w \in \operatorname{pref}(\eta) \} = \{ \eta : w \sqsubset \eta \}$ Diameter: diam $w \cdot X^{\omega} = r^{-|w|}$ diam $F = \inf \{ r^{-|w|} : F \subseteq w \cdot X^{\omega} \}$ Open sets: $W \cdot X^{\omega} = \bigcup_{w \in W} w \cdot X^{\omega}$ Closure: (Smallest closed set containing F) $\mathcal{C}(F) = \{ \xi : \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F) \}$

Fact

 $F \subseteq X^{\omega}$ is closed if and only if $pref(\xi) \subseteq pref(F)$ implies $\xi \in F$.

Outline	Preliminaries	Automata on ω-words	Topology oooooooooooooooooooooooo	Measure 00000	Relativisation
{0,1	$\}^{\omega}$ as a T	ree			



シック 単 (中下・(中下・(中下・))

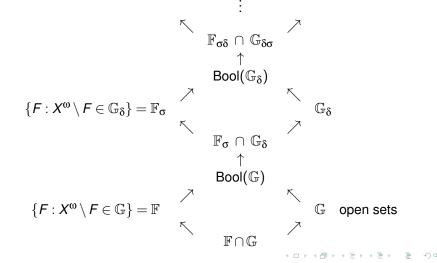
Outline	Preliminaries	Automata or	Topology	Measure 00000	Relativisation
	_		 		

The BOREL-Hierarchy: First Levels

Open Sets:	$W \cdot X^{\omega}$		
Closed Sets:	F = C(F),	$F = X^{\omega} \setminus W \cdot X^{\omega}$	\mathbb{F} [\mathbb{F} – ferme, <i>fr.</i>]
\mathbb{F}_{σ} -Sets:	$\bigcup_{i\in\mathbb{N}}F_i$	$(F_i \text{ closed})$	$[\sigma \approx \sum - sum]$
$\mathbb{G}_{\delta}\text{-}Sets\text{:}$	$\bigcap_{i\in\mathbb{I}\mathbb{N}}E_i$	$(E_i \text{ open}), \bigcap_{i \in i}$	$W_i \cdot X^{\omega}$
	$[\delta - Durchs]$	schnitt, <i>german</i> f	for intersection]
\implies			

	Example	Closure properties	
Open sets	$0^*1 \cdot X^{\omega}$	\cap	U
Closed sets	$\{0^{\omega}\}$	U	\cap
\mathbb{F}_{σ} -sets	$\{0,1\}^*\cdot 0^\omega$	\cap	Ui∈IN
\mathbb{G}_{δ} -sets	(0*1) ^ω	U	$\bigcap_{i \in \mathbb{N}}$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �



Outline	Preliminaries	Automata on ω-words ●000000	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation
Autor	mata on o	ω-words: Bü	CHI-automata		

- $\mathcal{A} = (Q, \Delta, q_0, Q_{\text{fin}})$ is a BÜCHI-Automaton over $X : \iff$
 - ① *Q* is a non-empty set (*states*)
 - **2** $q_0 \in Q$ (initial state)
 - **3** $\Delta \subseteq Q \times X \times Q$ (transitions)
 - **4** $Q_{\text{fin}} \subseteq Q$ (final states)

 \implies

- \mathcal{A} is a *finite* automaton, if Q is finite.
- \mathcal{A} is a *deterministic* automaton, if $(q, x, q'), (q, x, q'') \in \Delta$ implies q' = q''.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Outline	Preliminaries	Automata on ω-words ○●○○○○○	Topology ०००००००००००००००००००००	Measure 00000	Relativisation
Düa					

BUCHI-automata: Acceptance

Run on ξ : $(q_i)_{i \in \mathbb{N}}$ with $\forall i \ge 0 : (q_i, \xi(i+1), q_{i+1}) \in \Delta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Preliminaries	Automata on ω-words	Topology oooooooooooooooooooooooo	Measure 00000	Relativisation
Διιτο	mata on	words			

Other types of ω -automata

- MULLER-automata
- RABIN-automata
- STREETT-automata
- The difference consists in acceptance conditions.
- Deterministic variants are as powerful as non-deterministic BÜCHI-automata.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Outline	Preliminaries 00000	Automata on ω-words 000●000	Topology 000000000000000000000000000000000000	Measure 00000	Relativisation
A t .					

Automata on ω -words: MULLER-automata

- $\mathcal{A} = (Q, \Delta, q_0, \mathcal{T})$ is a MULLER-Automaton over X : \iff
 - **1** *Q* is a non-empty set (*states*)
 - **2** $q_0 \in Q$ (initial state)

 \implies

- **3** $\Delta \subseteq Q \times X \times Q$ (transitions)
- **4** $T \subseteq 2^Q$ (table of final sets)

 $\mathcal{A} \text{ accepts } \xi: \quad \exists (q_i)_{i \in \mathbb{N}} \quad \forall i \ge 0 : (q_i, \xi(i+1), q_{i+1}) \in \Delta \quad \land \\ \{q : \exists^{\infty} k(q_k = q)\} \in \mathcal{T} \\ \mathcal{A} \text{ accepts } F: \quad F = \{\xi : \mathcal{A} \text{ accepts } \xi\}$

・ロト・西・・日・・日・・日・

Outline	Preliminaries	Automata on ω-words	Topology occocococococococococo	Measure 00000	Relativisation
Regu	ular ω-lan	iguages			

Definition (Regular ω -language)

An ω -language $F \subseteq X^{\omega}$ is called *regular* if and only if F is accepted by a finite automaton

Theorem (BÜCHI 1962)

1 An ω -language $F \subseteq X^{\omega}$ is regular if and only if

$$F = \bigcup_{i=1}^{n} W_i \cdot V_i^{\omega}$$

for some $n \in \mathbb{N}$ and regular languages $W_i, V_i \subseteq X^*$.

2 The set of regular ω-languages over X is closed under Boolean operations.

Outline	Preliminaries	Automata on ω-words ○○○○○●○	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation
Ultim	ately Per	riodic ω-word	S		

Definition (Ultimately periodic ω-words)

 $\label{eq:Ult} \begin{array}{l} \text{Ult} := \{ \textit{w} \cdot \textit{v}^{\omega} : \textit{w}, \textit{v} \in \textit{X}^* \land \textit{v} \neq \textit{e} \} \text{ the set of }\textit{ultimately periodic} \\ \textbf{ω-words.} \end{array}$

Theorem (BÜCHI 1962)

Every non-empty regular ω-language contains an ultimately periodic ω-word.

2 Let
$$E, F \subseteq X^{\omega}$$
 be regular. Then
 $E = F \iff E \cap \text{Ult} = F \cap \text{Ult}$

Lemma

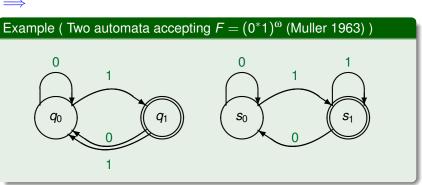
If $F \subseteq X^{\omega}$ is regular then its prefix language **pref**(F) $\subseteq X^*$ and its closure C(F) are also regular, and if $W \subseteq X^*$ is a regular language, then $W \cdot F$ is regular.

Outline	Preliminaries	Automata on ω-words ○○○○○●	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation
Refe	rences				

- J.R. Büchi, On a decision method in restricted second order arithmetic. Proc. 1960 Int. Congr. for Logic, Stanford Univ. Press, Stanford 1962, 1–11.
- L.H. Landweber, Decision problems for ω-automata, Math. Syst. Theory 3(1969) 4, 376–384.
- R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inform. Control 9 (1966), 521–530.
- D.E. Muller, Infinite sequences and finite machines, in: Proc. 4th Ann. IEEE Symp. Switching Theory and Logical Design, Chicago 1963, 3–16.
- M.O. Rabin, Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1, 1–35.
- L. Staiger und K. Wagner, Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb. Kybernetik ElK 10 (1974) 7, 379–392.
 - K. Wagner, On ω -regular sets. Inform. and Control 43 (1979), 123–177.

Theorem (Landweber 1969)

An ω -language $F \subseteq X^{\omega}$ is accepted by a finite deterministic BÜCHI-automaton (DBA) if and only if F is regular and a \mathbb{G}_{δ} -set. [F is deterministic regular.]



Outline	Preliminaries	Automata on ω-words	Topology 000000000000000000000000000000000000	Measure 00000	Relativisation
Autor	mata and	Topology: C	losed ω -language	es	

Definition (Trim Automaton)

A *trim automaton* is a partial automaton $\mathcal{A} = (X, Q, \Delta, q_0, Q_{fin})$ with $Q_{fin} = Q$.

Lemma

An ω -language $F \subseteq X^{\omega}$ is accepted by a finite (deterministic) trim automaton (TA) if and only if F is regular and closed in CANTOR space.

Lemma

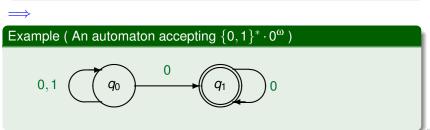
An ω -language $F \subseteq X^{\omega}$ is regular and closed in CANTOR space if and only if pref(F) is a regular language and $F = \{\xi : pref(\xi) \subseteq pref(F)\}.$

Definition (Weak BÜCHI automata)

An automaton $\mathcal{A} = (X, Q, \Delta, q_0, Q_{\text{fin}})$ is referred to as a *weak* BÜCHI *automaton* provided Q_{fin} is a union of strongly connected components.

Theorem (*St.* and Wagner 1974, Wagner 1979)

 $F \subseteq X^{\omega}$ is accepted by a finite weak Bücнı automaton (NWA) if and only if F is regular and an \mathbb{F}_{σ} -set.



Outline	Preliminaries	Automata on ω-words	Topology ○○○●○○○○○○○○○○○○○○○○○	Measure 00000	Relativisation
		A 1 1			

Weak BÜCHI Automata and BOREL hierarchy

Theorem (St. and Wagner 1974, Wagner 1979)

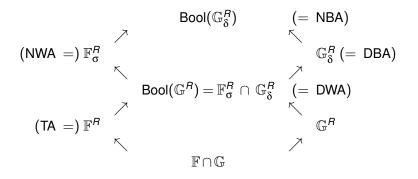
- If *F* ⊆ X[∞] is accepted by a finite deterministic weak BÜCHI automaton (DWA) if and only if *F* is regular and simultaneously an 𝔽_σ- and a 𝔅_δ-set.
- 2 If F ⊆ X^ω is regular and simultaneously an 𝔽_σ- and a 𝔅_δ-set then it is a Boolean combination of open regular ω-languages.

Theorem (St. and Wagner 1974, Wagner 1979)

Given a deterministic BÜCHI-automaton, it is decidable in polynomial time whether the accepted ω -language is simultaneously an \mathbb{F}_{σ} - and a \mathbb{G}_{δ} -set.

Outline Measure Automata on ω-words Topology Relativisation





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 Outline
 Preliminaries
 Automata on φ-words
 Topology
 Measure
 Relativisation

 MULLER-automata:
 Topology and Tables

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)

Let $\mathcal{A} = (Q, \Delta, q_0, T)$ be a MULLER-automaton and F be accepted by \mathcal{A} .

- 1 If \mathcal{A} is deterministic and \mathcal{T} is upwardly closed $(Q' \in \mathcal{T} \land Q' \subseteq Q'' \rightarrow Q'' \in \mathcal{T})$ then $F \in \mathbb{G}_{\delta}$.
- 2 If T is downwardly closed ($Q' \in T \land Q' \supseteq Q'' \to Q'' \in T$) then $F \in \mathbb{F}_{\sigma}$.

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)

Let F be a regular ω -language.

- **1** If $F \in \mathbb{G}_{\delta}$ then there is a deterministic MULLER-automaton $\mathcal{A} = (Q, \Delta, q_0, \mathcal{T})$ with upwardly closed \mathcal{T} accepting F.
- 2 If $F \in \mathbb{F}_{\sigma}$ then there is a deterministic MULLER-automaton $\mathcal{A} = (Q, \Delta, q_0, \mathcal{T})$ with downwardly closed \mathcal{T} accepting F.

Outline	Preliminaries	Automata on ω-words	Topology	000000000	Measure 00000	Relativisation				
Characterisation by Regular Languages										
	CLASS	REPRESENTAT		IMENT						
1	. G ^{<i>R</i>}	$W \cdot X^{\omega}$	W re	egular (and	prefix-fre	e)				
2	. \mathbb{F}^{R}	$\{\xi: pref(\xi) \subseteq$	W} Wre	egular						
3	$. \mathbb{F}^{R}_{\sigma} \cap \mathbb{G}^{R}_{\delta}$	$\bigcup_{i=1}^{n} W_{i} \cdot F_{i}$	· –	X^{ω} closed W_i prefix-fr	• • •	gular				
4	. \mathbb{F}^{R}_{σ}	$\bigcup_{i=1}^{n} W_{i} \cdot F_{i}$	$F_i \subseteq$	X^{ω} closed	, <i>W_i, F_i</i> re	gular				
5	. \mathbb{G}^{R}_{δ}	$\bigcup_{i=1}^{n} W_{i} \cdot V_{i}^{\omega}$	W_i, N	V _i regular a	nd prefix-	free				
6	. regular	$\bigcup_{i=1}^{n} W_{i} \cdot V_{i}^{\omega}$	W_i, V	V _i regular (a	and V_i pre	efix-free)				

シック 単 (中下・(中下・(中下・))

Outline	Preliminaries	Automata on ω-words	Topology 000000000000000000000000000000000000	Measure 00000	Relativisation
Refe	rences				

- Perrin, D. and Pin, J.-É.: *Infinite Words*, volume 141 of *Pure and Applied Mathematics*. Elsevier, Amsterdam, 2004.
- Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 339–387. Springer-Verlag, Berlin 1997
 - Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) *Handbook of theoretical computer science*, vol. B, pp. 133–191. Elsevier Science Publishers B.V., Amsterdam 1990
- Thomas, W.: Languages, automata, and logic, In: Rozenberg, G., Salomaa, A. (eds.) *Handbook of Formal Languages*, vol. 3, Vol. 3, pp. 389–455. Springer-Verlag, Berlin 1997
- Trakhtenbrot, B.A. and Barzdiń, Ya. M.: *Finite Automata, Behaviour and Synthesis*, Nauka Publishers, Moscow 1970. (Russian; English translation: North Holland, Amsterdam 1973)

Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○●○○○○○○○○○○○○	Measure 00000	Relativisation

NERODE Right Congruence

Definition

$$\begin{array}{lll} u \sim_W v & :\Leftrightarrow & \forall w (w \in X^* \to (u \cdot w \in W \longleftrightarrow v \cdot w \in W)) \\ [v]_{\sim_W} & := & \{u : u \sim_W v\} & [\text{equivalence classes}] \\ \mathrm{Ind}(\sim_W) & := & |\{[v]_{\sim_W} : v \in X^*\}| \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (folklore)

 $W \subseteq X^*$ is regular if and only if $\operatorname{Ind}(\sim_W) < \infty$.

Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○ ○●○○○○ ○○○○○○○	Measure 00000	Relativisation
Left I	Derivative	e of Languag	es and ω -langua ${\mathfrak{g}}$	ges	

Definition (Left derivative)

Let
$$B \subseteq X^* \cup X^{\omega}$$
 and $w \in X^*$.
 $B/w := \{\eta : w \cdot \eta \in B\}.$

Property

$$B/v = B/w \iff v \sim_B w$$
 and $|\{B/w : w \in X^*\}| = \operatorname{Ind}(\sim_B)$

\implies

Definition (Associated automaton)

$$\mathcal{A}_B = (\{B/w : w \in X^*\}, \Delta_B, B/e) ext{ where } \Delta_B = \{(B/w, x, B/wx) : w \in X^* \land x \in X\}$$

Theorem (folklore)

If $W \subseteq X^*$ then $\mathcal{A}_W = (\{W/v : v \in X^*\}, \Delta_B, B/e, \{W/u : u \in W\})$ is a minimal deterministic automaton accepting W.

Definition:
$$u \sim_F v : \iff \forall \xi (\xi \in X^{\omega} \rightarrow (u \cdot \xi \in F \longleftrightarrow v \cdot \xi \in F))$$

Theorem (Trakhtenbrot 1962, Jürgensen and Thierrin 1983)

[Tr] If F ⊆ X^ω is regular, then ~_F has finite index (Ind(~_F) < ∞).
 [Tr] If Ind(~_F) < ∞ and F ⊆ X^ω is closed then F is regular.
 [JT] There are 2^{2^{×0}} ω-languages E with Ind(~_E) = 1.

Theorem (1983)

- Let $F \subseteq X^{\omega}$ be in $\mathbb{F}_{\sigma} \cap \mathbb{G}_{\delta}$ and $\mathrm{Ind}(\sim_F) < \infty$. Then
 - 1 F is already regular and
 - **2** *F* is accepted by its associated automaton \mathcal{A}_F .

Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○○○○○○○○○○○○○○○	Measure 00000	Relativisation
N 41 1	1. J.	6 I I			

Minimisation of ω -automata

Lemma

If $F \subseteq X^{\omega}$ then every deterministic BÜCHI- (MULLER-)automaton accepting F has \mathcal{A}_F as a homomorphic image.

Corollary

If a deterministic (co-)BÜCHI- (MULLER-)automaton \mathcal{A} accepts $F \subseteq X^{\omega}$ then \mathcal{A} has at least $\operatorname{Ind}(\sim_F)$ states.

\implies

Fact

- There are regular ω-languages F ⊆ X[∞] having more than one minimal-state BÜCHI- (MULLER-)automaton A accepting F.
- 2 There are regular ω-languages F ⊆ X[∞] having exactly one minimal-state BüCHI- (MULLER-)automaton A accepting F but not being accepted by A_F.

 Outline
 Preliminaries
 Automata on ω -words
 Topology
 Measure
 Relativisation

 Outline
 Outline
 Outline
 Outline
 Topology
 Measure
 Relativisation

 Minimized to the second second

Minimisation of ω -automata: $n \log n$ -algorithm

Theorem (Löding 2001)

There is an algorithm minimising an n-state deterministic weak BÜCHI automaton accepting an ω -language F in $O(n \log n)$ time to the associated automaton \mathcal{A}_F .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○○○○○○○○○○○○○○○	Measure 00000	Relativisation
Refe	rences				

- Jürgensen, H. and Thierrin, G., On ω-languages whose syntactic monoid is trivial. Intern. J. Comput. Inform Sci. 12 (1983) 5, 359 -365.
- Löding, C., Efficient minimization of deterministic weak ω-automata. Inf. Process. Lett. 79 (2001) 3, 105-109.
- Maler, O. and Staiger, L., On Syntactic congruences for ω -languages and the minimization of ω -automata. EATCS Bull. 53 (1994), 447-448.
- Maler, O. and Staiger, L., On syntactic congruences for ω-languages, Theoret. Comput. Sci. 183 (1997) 1, 93-112.
- Staiger, L., Finite-state ω -languages, J. Comput. Syst. Sci. 27 (1983) 3, 434-448.
- Staiger, L., Research in the theory of $\omega\mbox{-languages. J. Inform. Process.}$ Cybernetics EIK 23 (1987) 8/9, 415-439.
- Trakhtenbrot, B.A., Finite automata and monadic second order logic, Sibirsk.
 Mat. Ž. 3 (1962), 103-131. (Russian;
 English translation: AMS Transl. 59 (1966), 23–55.)

Small and Large Sets in CANTOR Topology

dense:
$$\mathcal{C}(F) = X^{\omega}$$
, $\mathsf{pref}(F) = X^*$

nowhere dense: $w \cdot X^{\omega} \not\subseteq C(F)$ for all $w \in X^*$ The closure does not contain an open set.

First BAIRE category
or meagre: $\bigcup_{i \in \mathbb{N}} F_i$ (F_i nowhere dense)Second BAIRE category:not of first BAIRE categoryresidual: $X^{\omega} \setminus F$ is of first BAIRE category

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Outline	Preliminaries	Automata on ω-words	Topology	Measure	Relativisation
			000000000000000000000000000000000000000		

Small and Large Sets

	Topology	Closure properties		
very large	F is residual	superset	$\bigcap_{i \in \mathbb{N}}$	
large	F is of 2 nd BAIRE category	superset	_	
small	F is of 1 st BAIRE category	subset	Ui∈∎N	
very small	F is nowhere dense	subset	U	

	Logical description	Example
very large	infinitely many ones	(0*1) ^ω
large		$0(0^*1)^\omega \cup 1\{0,1\}^* \cdot 0^\omega$
small	finitely many ones	$\{0,1\}^*\cdot 0^\omega$
very small	\leq <i>n</i> ones	$\bigcup_{i=0}^{n} (0^*1)^i \cdot 0^{\omega}$

Outline	Preliminaries	Automata on ω-words	Topology	Measure	Relati
			000000000000000000000000000000000000000		

Small and Large Sets: BOREL classes

Lemma

In every complete metric space (X, ρ) the following are true.

- Every nowhere dense set is contained in a closed nowhere dense set.
- 2 Every set of 1st BAIRE category is a subset of an \mathbb{F}_{σ} -set of 1st BAIRE category.
- **3** Every \mathbb{G}_{δ} -set of 1st BAIRE category is nowhere dense.
- 4 If M is a \mathbb{G}_{δ} -set then $\mathcal{C}_{\rho}(M) \setminus M$ is a set of 1st BAIRE category.
- **5** Every residual set contains a residual \mathbb{G}_{δ} -set.
- 6 Every residual set is dense.

Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○○○○○○○○○○○○○○○○○	Measure 00000	Relativisation
~					

Small Regular ω-languages

Example (Forbidden subwords)

 $E = X^{\omega} \setminus X^* \cdot v \cdot X^{\omega}$ is nowhere dense because $E \cap w \cdot v \cdot X^{\omega} = \emptyset$ for all $w \in X^*$.

\implies

Theorem (1976)

Let $F \subseteq X^{\omega}$ be a regular ω -language.

● *F* is nowhere dense if and only if there is a $v \in X^*$ such that $F \subseteq X^{\omega} \setminus X^* \cdot v \cdot X^{\omega}$.

2 *F* is of 1st BAIRE category if and only if
$$F \subseteq \bigcup_{v \in X^*} (X^{\omega} \setminus X^* \cdot v \cdot X^{\omega}).$$

Visualisation: *r*-adic Expansion

$$Y = \{0, 1, \dots, r-1\}$$

$$0.\eta \in [0, 1] \subseteq \mathbb{R} \quad \stackrel{\vee_r}{\longleftarrow} \quad \eta \in Y^{\omega}$$

$$(0.\operatorname{proj}_1 \xi, \dots, 0.\operatorname{proj}_d \xi) \in [0, 1]^d \quad \stackrel{\vee_r}{\longleftarrow} \quad \xi \in (\underbrace{Y \times \dots \times Y}_{d-\operatorname{times}})^{\omega}$$

$$\operatorname{Example:} \quad r = 2$$

$$\stackrel{3}{4} \quad \stackrel{\vee_2}{\longleftarrow} \quad \begin{cases} 0.11000...\\ 0.101111...\\ 0.10111...\\ 0.10111...\\ 0.10111...\\ 0.10111..$$

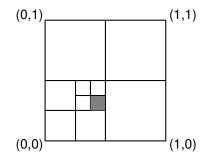
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 Outline
 Preliminaries
 Automata on ω-words
 Topology
 Measure
 Relativisation

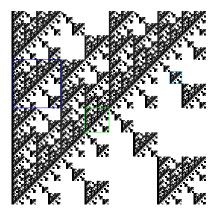
 Visualisation in the Unit Square [0, 1]²

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Notation (r = 2): $X := \{(0,0), (0,1), (1,0), (1,1)\}$ Quadrant in $[0,1]^2$: $\mathbf{Q}_{(0,0)(1,1)(1,0)} = v_2((0,0)(1,1)(1,0) \cdot X^{\omega})$



Outline	Preliminaries	Automata on ω-words	Topology ○○○○○○○○○○○○○○○○○○○	Measure 00000	Relativisatio
Visua	alisation:	A Regular N	owhere Dense Se	et	



 $u = (1, 1) \cdot (0, 1) \cdot (1, 0) \cdot (0, 1)$ $w = (1, 0) \cdot (0, 0)$ $v = (0, 0) \cdot (1, 1) \cdot (1, 1)$

ヘロア 人間 アメヨア 人団 アーロー

 $\begin{array}{rclcrcrc} S_1 &=& (0,1) \cdot S_3 & \cup (0,0) \cdot S_1 & \cup (1,1) \cdot S_1 & \cup (1,0) \cdot S_2 \\ S_2 &=& (0,1) \cdot S_2 & \cup (0,0) \cdot S_1 & \cup (1,1) \cdot S_3 & \cup (1,0) \cdot S_1 \\ S_3 &=& (0,1) \cdot S_1 & & \cup (1,0) \cdot S_3 \end{array}$

DEDN			$\mathbf{V}(0)$		
Outline	Preliminaries	Automata on ω-words	Topology ooooooooooooooooooooooo	Measure ●0000	Relativisation

BERNOULLI Measures $\bar{\mu}$ on X^{ω}

BERNOULLI measure on X^* : $\mu: X^* \to [0, 1]$

$$\Rightarrow \quad \sum_{x \in X} \mu(x) = 1, \, \mu(x) > 0; \\ \Rightarrow \quad \mu(w \cdot v) := \mu(w) \cdot \mu(v)$$

Property

If $W \subseteq X^*$ is prefix-free then $\sum_{w \in W} \mu(w) \leq 1$

\implies

Definition (BERNOULLI measure on X^{ω})

Measure on balls: $ar{\mu}(w\cdot X^{\omega}):=\mu(w)$

Measure on open sets: If $W \subseteq X^*$ is prefix-free then $\bar{\mu}(W \cdot X^{\omega}) := \sum_{w \in W} \mu(w)$

Outline	Preliminaries	Automata on ω-words	Topology oooooooooooooooooooooooo	Measure o●ooo	Relativisation

Comparison of Small and Large Sets

	Measure $[\mu(X^{\omega}) = 1]$	Тороlоду
very large	$ar{\mu}(F)=1$	F is residual
large	$ar{\mu}(F) > 0$ or	F is of 2 nd BAIRE category
	F is not measurable	
small	$ar{\mu}(F)=0$	F is of 1 st BAIRE category
very small	$\bar{\mu}(\mathcal{C}(F)) = 0$ =	\Rightarrow F is nowhere dense

Proposition (Incomparability (cf. OXTOBY: Measure and Category))

- **1** There is a nowhere dense set $F \subseteq X^{\omega}$ such that $\overline{\mu}(F) > 0$.
- 2 There is a set of 1st BAIRE category such that $\bar{\mu}(F) = 1$.

There is a residual set $E \subseteq X^{\omega}$ such that $\overline{\mu}(E) = 0$.

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00●00	Relativisation
Prob	abilistic A	Arguments			

Bad news for probabilistic arguments

Example

The set of BERNOULLI- (BOREL-normal) sequences over X is of 1st BAIRE category.

Outline	Preliminaries	Automata on ω-words	Topology ooooooooooooooooooooooo	Measure 000●0	Relativisation

An Example: Łukasiewicz Language

Defining equation: $\pounds = 0 \cup 1 \cdot \pounds^3$ $\mu(\pounds) = \mu(0) + \mu(1) \cdot \mu(\pounds^3)$

 Ł is a simple deterministic context-free language, hence prefix-free.

→
$$\mu(k^n) = \mu(k)^n$$

- 2 Eq. (2) $\mu(k) = (1 \mu(1)) + \mu(1) \cdot \mu(k^3)$ has the positive solutions $t_0 = 1$ and $t_1 = -\frac{1}{2} + \sqrt{\frac{1}{\mu(1)} \frac{3}{4}}$.
- **3** $\mu(k)$ is the smallest positive solution of Eq. (2).

4
$$\mu(\texttt{k}) = \frac{\sqrt{5}-1}{2} < 1$$
 for $\mu(1) = \frac{1}{2}$ and $\mu(\texttt{k}) = 1$ for $\mu(1) \le \frac{1}{3}$.

→
$$\bar{\mu}(\bigcap_{n\in\mathbb{I}N} \mathsf{k}^n \cdot X^{\omega}) = \begin{cases} 0 & \text{for } \mu(1) = 1/2 \text{ , and} \\ 1 & \text{for } \mu(1) \leq 1/3 \end{cases}$$

6 ∩_{n∈IN} Łⁿ · X^ω is a G_δ-set and dense in {0,1}^ω, thus its complement is of 1st BAIRE category.

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 0000●	Relativisation
Торо	logy and	Measure in (CANTOR space		

Theorem (1976),

Let $\mu : X^* \to (0, 1)$ be a BERNOULLI measure and let $F \subseteq X^{\omega}$ be a regular ω -language. Then F is of 1st BAIRE category if and only if $\overline{\mu}(F) = 0$.

\implies

Proof Scheme: Induction on BOREL CLASSES

closed *F* is nowhere dense if and only if $\bar{\mu}(F) = 0$.

 \mathbb{F}_{σ} -sets *F* is a countable union of closed regular ω -languages.

 \mathbb{G}_{δ} -sets $\mathcal{C}(F)$ is the union of *F* and $\mathcal{C}(F) \setminus F$, where $\mathcal{C}(F) \setminus F$ is a regular ω-language in \mathbb{F}_{σ} of 1st BAIRE category.

general *F* is a countable union of regular ω -languages in \mathbb{G}_{δ} .

Outline	Preliminaries	Automata on ω-words	Topology occocococococococococo	Measure 00000	Relativisation •••••••
Bala	nced Mea	asures			

Definition

A finite measure $\bar{\mu}$ on X^{ω} is called *balanced* if the following holds true.

$$\exists c > 0 \ \forall w \in X^* \forall x \in X : \ \overline{\mu}(wx \cdot X^{\omega}) > c \cdot \overline{\mu}(w \cdot X^{\omega})$$
 or
 $\overline{\mu}(wx \cdot X^{\omega}) = 0$

Definition (Support)

Let $\bar{\mu}$ be a finite measure on X^{ω} . The smallest closed set F with $\bar{\mu}(F) = \bar{\mu}(X^{\omega})$ is referred to as the *support* **supp**($\bar{\mu}$) of $\bar{\mu}$.

Outline	Preliminaries	Automata on ω-words	Topology occocococococococococo	Measure 00000	Relativisation
Relat	tivisation	Nowhere de	ense sets		

Definition (Relative density)

Let $S, F \subseteq X^{\omega}, S \neq \emptyset$. We call F nowhere dense in S if for every non-empty ball $S \cap w \cdot X^{\omega}$ in S there is a non-empty sub-ball $S \cap w \cdot v \cdot X^{\omega}$ disjoint with F.

\implies

Lemma (1998)

Let $S \subseteq X^{\omega}$ be a regular ω -language. A regular ω -language $F \subseteq X^{\omega}$ is nowhere dense in S if and only if for every $w \in \mathbf{pref}(S)$ there is a $v \in X^*$ such that

$$lacksquare$$
 $|v| < \operatorname{Ind}(\sim_{\mathit{F}}) \cdot \operatorname{Ind}(\sim_{\mathit{S}}) + 1$ and

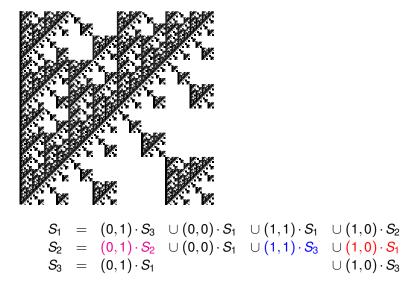
2 and
$$w \cdot v \in \operatorname{pref}(S)$$
 and $w \cdot v \notin \operatorname{pref}(F)$.

Remark

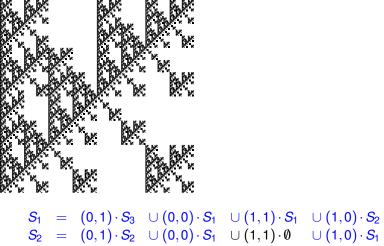
Observe that $S \cap w \cdot X^{\omega} \neq \emptyset$ if and only if $w \in \mathbf{pref}(S)$.

Outline	Preliminaries	Automata on ω-words	Topology	Measure	Relativisation
					000000000000000000000000000000000000000

Visualisation: ω -language S



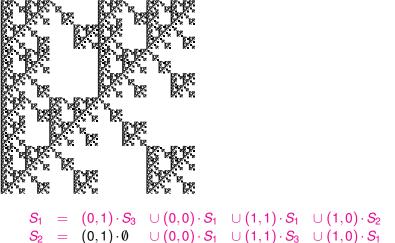
Visualisation: F_0 nowhere dense in S



 $S_3 = (0,1) \cdot S_1 \qquad \qquad \cup (1,0) \cdot S_3$

Outline	Preliminaries	Automata on ω-words	Topology	Measure	Re
	00000	0000000	000000000000000000000000000000000000	00000	oc
× /·					

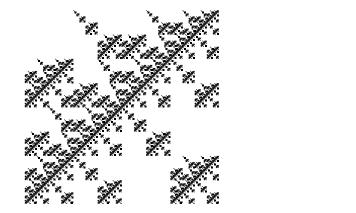
Visualisation: F_1 nowhere dense in S



 $S_3 = (0,1) \cdot S_1 \qquad \qquad \cup (1,0) \cdot S_3$

ativisation 00000000

Visualisation: F_2 nowhere dense in S



 $\begin{array}{rclcrcrc} S_1 &=& (0,1) \cdot S_3 & \cup (0,0) \cdot S_1 & \cup (1,1) \cdot S_1 & \cup (1,0) \cdot S_2 \\ S_2 &=& (0,1) \cdot S_2 & \cup (0,0) \cdot S_1 & \cup (1,1) \cdot S_3 & \cup (1,0) \cdot \emptyset \\ S_3 &=& (0,1) \cdot S_1 & & \cup (1,0) \cdot S_3 \end{array}$

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation
D					

Relativisation: Inhomogeneity

Example (Inhomogeneity)

For $S = 0 \cdot (0 \cdot X)^{\omega} \cup 1 \cdot X^{\omega}$ we have: $F_1 = 0 \cdot (0 \cdot X)^{\omega}$ is of 2nd BAIRE category in *S*, and $F_2 = 1 \cdot (0 \cdot X)^{\omega}$ is nowhere dense in *S*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Theorem (St. 1998, Varacca and Völzer 2006)

Let $S \subseteq X^{\omega}$ regular and closed and $F \subseteq S$ be regular. Then the following are equivalent.

- **1** *F* ist is of 1st BAIRE category in S.
- There is a balanced finite measure μ
 μ with support supp(μ
 μ) = S such that μ
 μ(F) = 0.
- **3** $\bar{\mu}(F) = 0$ for all balanced finite measures $\bar{\mu}$ with support **supp**($\bar{\mu}$) = *S*.

\implies

Corollary

Let $S \subseteq X^{\omega}$ regular and closed. Then $\bigcup \{F : F \subseteq S \land F \text{ is regular and nowhere dense in } S\}$ is a null-set universal for all balanced finite measures $\overline{\mu}$ with support $\operatorname{supp}(\overline{\mu}) = S.$

Outline	Preliminaries	Automata on ω-words	Topology ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Measure 00000	Relativisation

References: Automata and Measure

- Staiger, L.: Reguläre Nullmengen, *Elektron. Informationsverarb. Kybernet.* EIK 12: 307–311 (1976).
- Staiger, L.: Rich ω-words and monadic second-order arithmetic. In M. Nielsen and W. Thomas, editors, *Computer Science Logic* (*Aarhus, 1997*), Selected papers, LNCS 1414, Springer, 478–490 (1998).
- Varacca, D. and Völzer, H.: Temporal logics and model checking for fairly correct systems. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), IEEE Computer Society, 389–398 (2006).

Outline	Preliminaries	Automata on ω -words	Topology	Measure	Relativisation
					000000000000

What ω -automata cannot prove

 ω -automata cannot prove that

- **1** there are sets in BOREL classes higher than $Bool(\mathbb{G}_{\delta})$,
- 2 there are sets in $(\mathbb{G}_{\delta} \cap \mathbb{F}_{\sigma}) \setminus \text{Bool}(\mathbb{G})$,
- 3 there are nowhere dense BERNOULLI non-nullsets,
- **4** there are BERNOULLI nullsets of 2nd BAIRE category,
- **6** there are sets which are BERNOULLI nullsets w.r.t. measure $\bar{\mu}_1$ but not w.r.t. measure $\bar{\mu}_2$

but they are useful for proving largeness by probabilistic arguments.

Outline

Automata on ω-wo

Measure

Relativisation

三 つへの