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m-automata

e Circuit Design
e Monadic Second-Order Logic
e Verification

e Temporal Logics
o Fixed-Point Logics
e Model Checking

e Symbolic Dynamics
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Model Checking: Automata-theoretic properties

Quotation from a recent paper by DIEKERT, MUSCHOLL and
WALUKIEWICZ

The common theme in automata on infinite words is that finite state devices
serve to classify w-regular properties. The most prominent classes are:

Deterministic properties: there exists a DBA.?

Deterministic properties which are simultaneously co-deterministic: there
exists a DWA.

Safety properties: there exists a DBA where all states are final.
Cosafety properties: the complement is a safety property.

Liveness properties: there exists a BA where from all states there is a path
to some final state lying in a strongly connected component.

Monitorable properties: there exists a monitor.”

4deterministic BUCHI automaton
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Relations to Topology

Correspondence to topological properties

Safety: closed sets = F.

Co-safety: open sets = G.

Liveness: dense = closure is the whole space.
Deterministic: Gg
Co-deterministic: Fq
Deterministic and simultaneously co-deterministic: GgNFg
Monitorable: the boundary is nowhere dense.

—

Fair Correctness [Varacca and Volzer]

The set of runs which satisfy the specification is /large from a
topological point of view.
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Notation: Strings and Languages

Finite Alphabet X = {0,...,r—1}, cardinality |[X|=r
Finite strings (words) w = xq---x, € {0,1}*, x; € {0,1}
Length lw|=n
Languages W C X*
Infinite strings (w-words) & = xy---x,--- € X®
Prefixes of infinite strings &1 ne X*, [E1n|=n

pref(&) = {&n: ne N}

o-Languages F C X®
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X® as CANTOR space

Metric: p(n,&) :=inf{r "l : w € pref(n) N pref(E)}
Balls: w-X®={n:weprefn)}={n:wn}
Diameter: diamw - X® = r~["|
diam F = inf{r~": F C w.Xx®}
Opensets: W-X®=Uyeww-X®
Closure: (Smallest closed set containing F)
C(F) = {§ - pref(5) C pref(F)}

F C X is closed if and only if pref(E) C pref(F) implies& € F.
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{0,1}® as a Tree

00 01 10 11

111
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The BOREL-Hierarchy: First Levels

Open Sets: W- X©®
Closed Sets: F = (C(F), F=X®\W-X® [F —ferme, fr]

Fs-Sets: UieIN F;  (F; closed) [6~Y —sum]
Gs-Sets: ﬂieIN E;  (E open), ﬂielN W;- X®
[ 8 — Durchschnitt, german for intersection]
—
Example Closure properties

Open sets 0*1-X® N U

Closed sets {0®} U N

Fs-sets {0,1}*-0% N Uien

Gg-sets (0%1)® U NieN




The BOREL-Hierarchy of m-languages
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Automata on m-words: BUCHI-automata

4 =(Q,A,qo,Qsn) is a BUCHI-Automaton over X : <
© Qs a non-empty set (states)
® qo € Q (initial state)
® A C Qx X xQ (transitions)
O Qi C Q (final states)
—
— A is a finite automaton, if Q is finite.

— A is a deterministic automaton, if (q,x,q'),(q,x,q") € A
implies ¢ = q".
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BUcCHI-automata: Acceptance

Runon&: (gi)ienw With Vi >0:(gi,&(i4+1),qi+1) € A

Qo ]| Q2 Qi1 qi
NN T e T NN
&(1) &(2) &(i—1) &(1)
—
4 accepts &: 3(qi)ien Vi>0:(9,E(I+1),qi1) EA A

A accepts F: F = {&: 4 accepts &}



Automata on w-words
coeo

Automata on w-words

Other types of m-automata

MULLER-automata

RABIN-automata

STREETT-automata

- The difference consists in acceptance conditions.

Deterministic variants are as powerful as non-deterministic
BUCHI-automata.
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Automata on m-words: MULLER-automata

A4=(Q,A,q,7) is a MULLER-Automaton over X : <=
© Qs a non-empty set (states)
® qo € Q (initial state)
® A C Qx X x Q (transitions)
© 7 C 29 (table of final sets)
—

A accepts &: 3(qi)ien Vi>0:(9,E(I+1),qi1) EA A
{g:F"k(ak=0q)} €T
A accepts F: F = {&: 4 accepts &}



Automata on w-words
®00

Regular ®-languages

Definition (Regular m-language)

An o-language F C X® is called regular if and only if F is accepted
by a finite automaton

Theorem (BUCHI 1962)
@ An o-language F C X® is regular if and only if

n
F:Ui:1 VVIVI(D

for some n € IN and regular languages W;, V; C X*.

@® The set of regular w-languages over X is closed under Boolean
operations.
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Ultimately Periodic m-words

Definition (Ultimately periodic m-words)

Ult:={w-v®: w,v e X* Av # e} the set of ultimately periodic
W-words.

Theorem (BUCHI 1962)

© Every non-empty regular o-language contains an ultimately
periodic ®-word.
® Let E,F C X® be regular. Then
E=F < EnNnUlt=FnNUl.

Lemma

If F C X® is regular then its prefix language pref(F) C X* and its
closure C(F) are also regular, and if W C X* is a regular language,
then W - F is regular.




Automata on w-words
ocoe

References

[
[
B
[
B
B

J.R. Blichi, On a decision method in restricted second order arithmetic. Proc.
1960 Int. Congr. for Logic, Stanford Univ. Press, Stanford 1962, 1-11.

L.H. Landweber, Decision problems for w-automata, Math. Syst. Theory
3(1969) 4, 376-384.

R. McNaughton, Testing and generating infinite sequences by a finite
automaton, Inform. Control 9 (1966), 521-530.

D.E. Muller, Infinite sequences and finite machines, in: Proc. 4th Ann. IEEE
Symp. Switching Theory and Logical Design, Chicago 1963, 3—16.

M.O. Rabin, Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc. 141 (1969) 1, 1-35.

L. Staiger und K. Wagner, Automatentheoretische und automatenfreie
Charakterisierungen topologischer Klassen regularer Folgenmengen. Elektron.
Informationsverarb. Kybernetik EIK 10 (1974) 7, 379-392.

K. Wagner, On m-regular sets. Inform. and Control 43 (1979), 123—-177.



Topology
©0000000

Automata and Topology: Deterministic m-languages

Theorem (Landweber 1969)

An w-language F C X® is accepted by a finite deterministic
BUcHI-automaton (DBA) if and only if F is regular and a Gg-set.
[F is deterministic regular.]

—

Example ( Two automata accepting F = (0*1)® (Muller 1963) )

Bo
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Automata and Topology: Closed m-languages

Definition (Trim Automaton)

A trim automaton is a partial automaton 4 = (X, Q, A, qo, Qfn) With
Qﬁn =Q.

Lemma

An w-language F C X® is accepted by a finite (deterministic) trim
automaton (TA) if and only if F is regular and closed in CANTOR
space.

Lemma

An w-language F C X® is regular and closed in CANTOR space if
and only if pref(F) is a regular language and

F = {&: pref(§) C pref(F)}.
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Weak BUCHI Automata: Co-deterministic ®-languages

Definition (Weak BUCHI automata)

An automaton 4 = (X, Q, A, qo, Qan) is referred to as a weak BUCHI
automaton provided Q4 is a union of strongly connected
components.

Theorem (St. and Wagner 1974, Wagner 1979)

F C X® is accepted by a finite weak BUCHI automaton (NWA) if and
only if F is regular and an F;-set.

Example ( An automaton accepting {0,1}*-0%)
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Weak BUCHI Automata and BOREL hierarchy

Theorem (St. and Wagner 1974, Wagner 1979)

@ F C X® is accepted by a finite deterministic weak BUCHI
automaton (DWA) if and only if F is regular and simultaneously
anFs- and a Gg-set.

® If F C X is regular and simultaneously an F- and a Gs-set
then it is a Boolean combination of open regular w-languages.

Theorem (St. and Wagner 1974, Wagner 1979)

Given a deterministic BUCHI-automaton, it is decidable in polynomial
time whether the accepted w-language is simultaneously an Fs- and
a Gg-set.




Bool(Gf) (= NBA)

/ N
(NWA =) Ff G§ (= DBA)

N /!

Bool(GR) =Ff N Gf (= DWA)
/! N

(TA =) FA GR

N e

FNG
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MULLER-automata: Topology and Tables

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)
Let 4= (Q,A,qo,T) be a MULLER-automaton and F be accepted
by 4.
© /f A is deterministic and ‘T is upwardly closed
@QeTNQCQ'—-Q €T)thenF € Gg .

® If T is downwardly closed (' € TANQ D Q' — Q" € T) then
F E ]F‘G .

Theorem (Landweber 1969, St. and Wagner 1974, Wagner 1979)

Let F be a regular ®-language.

@ /f F € Gg then there is a deterministic MULLER-automaton
A4 =(Q,A,qo,7T) with upwardly closed T accepting F.

® If F € F; then there is a deterministic MULLER-automaton
A =(Q,A, qo,7T) with downwardly closed T accepting F.
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Characterisation by Regular Languages

CLASS REPRESENTATION COMMENT
1. GR w. x® W regular (and prefix-free)
2. FR {€: pref(§) C W} W regular

n Fi C X® closed, W;, F; regular
R R . : | = ] Iy 11
3. FsNGg I,L:J1 Wi-Fi and W, prefix-free

n

4. TR Uw-F F; C X® closed, W;, F; regular
i=1
n

5. G’; .U w;-v® Wi, V; regular and prefix-free

i=1

n
6. regular U w-ve W;, V; regular (and V; prefix-free)

i=1
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NERODE Right Congruence

Definition

ur~rwv & YwweX —w(uweW<+—v-weW))
[vVl-, = {u:u~wv} [equivalence classes]
Ind(~w) = [{[Vley:ve XY

Theorem (folklore)

W C X* is regular if and only if Ind(~w) < ee.
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Left Derivative of Languages and w-languages

Definition (Left derivative)
Let BC X*UX®and w € X*.
B/w:={n:w-n € B}.

Property
B/v=B/w < v~gwand|{B/w:w e X*}| =Ind(~5)

—

Definition (Associated automaton)

Ag = ({B/w:we X*},Ag,B/e) where
Apg={(B/w,x,B/wx):we X*Ax e X}

Theorem (folklore)

IfWC X* then Ay = ({W/v:veX*},Ap,B/e,{W/u:uec W})is
a minimal deterministic automaton accepting W.




Topology
008000

NERODE Right Congruence for m-languages

Definition: u~pv:<= VE(Ee X > (u-E€ F+—Vv-EEF))

Theorem (Trakhtenbrot 1962, Jiirgensen and Thierrin 1983)

@ [Tr] If F C X® is regular, then ~¢ has finite index (Ind(~F) < o).
@ [Tr] IfInd(~F) < e and F C X® is closed then F is regular.
@ [JT] There are 22°° w-languages E with Ind(~g) = 1.

==
Theorem (1983)

Let F C X® be inFs NGy and Ind(~F) < . Then
© F is already regular and
® F is accepted by its associated automaton Ar.
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Minimisation of w-automata

If F C X® then every deterministic BOCHI- (MULLER-)automaton
accepting F has Ar as a homomorphic image.

If a deterministic (co-)BUCHI- (MULLER-)automaton A accepts
F C X then A4 has at least Ind(~F) states.

-

@ There are regular o-languages F C X® having more than one
minimal-state BUCHI- (MULLER-)automaton A accepting F.

® There are regular o-languages F C X® having exactly one
minimal-state BUCHI- (MULLER-)automaton A accepting F but
not being accepted by Ar.
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Minimisation of m-automata: nlog n-algorithm

Theorem (Léding 2001)

There is an algorithm minimising an n-state deterministic weak

BUCHI automaton accepting an m-language F in O(nlog n) time to
the associated autornaton Ar.
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Small and Large Sets in CANTOR Topology

dense: C(F) = X®, pref(F) = X*

nowhere dense: w-X®Z C(F) forallwe X*
The closure does not contain an open set.

First BAIRE category

or meagre Uiew Fi (Fi nowhere dense)

Second BAIRE category: not of first BAIRE category

residual: X®\ F is of first BAIRE category
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Small and Large Sets

Topology Closure properties
very large F is residual superset Nien
large F is of 29 BAIRE category | superset -
small F is of 15t BAIRE category | subset Uiew
very small F is nowhere dense subset U

—
Logical description Example
very large infinitely many ones (0%1)®
large 0(0*1)®uU1{0,1}*-0®
small finitely many ones {0,1}*-0®
very small < nones Ulo(0*1)"-0®
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Small and Large Sets: BOREL classes

Lemma

In every complete metric space (X, p) the following are true.

© Every nowhere dense set is contained in a closed nowhere
dense set.

@ Every set of 15t BAIRE category is a subset of an Fs-set of
18t BAIRE category.

® Every Gg-set of 15t BAIRE category is nowhere dense.
O If M is a G;-set then G,(M) \ M is a set of 15 BAIRE category.
@ Every residual set contains a residual Gg-set.

@ Every residual set is dense.
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Small Regular m-languages

Example (Forbidden subwords)

E = X®\ X*-v-X®is nowhere dense because ENw-v-X® =0 for
allwe X*.

=

Theorem (1976)
Let F C X® be a regular o-language.

© F is nowhere dense if and only if there is a v € X* such that
FC X\ X*-v- X

©® F is of 15 BAIRE category if and only if
F CUpex-(XO\ X" v X®).




Topology
[eleleteY Yole}

Visualisation: r-adic Expansion

Y={01,....r—1}
0mel0,1]CR +~ mneye
. . v,
(0.proj, &,...,0.proj,&) € [0,1]9 +—  Ec(Yx...xY)?

d—times

Example: r=2
3

4

V2 0.11000...
{ 0.10111...

(s )p) €[0,1]2 <& Be{(0,0),...,(1,1)}°

Xg = 0.X1XoX3 ... Vo <X1> <X2> <X3)
N2 B=
yp=0.y1y2ys... Yi) \JVe/) \J3
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Visualisation in the Unit Square [0, 1]?

Notation (r =2): X :={(0,0),(0,1),(1,0),
Quadrant in [0,1]%: Qo 0)(1,1)(1,0) = V2((0,0)(1,1)(1,0) - X®)

(0,1) (1,1)

u
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Topology

Visualisation: A Regular Nowhere Dense Set
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BERNOULLI Measures u on X®

BERNOULLI measure on X*: p: X* — [0,1]
> Lxexu(x) =1, u(x) > 0;
> u(w-v) = p(w)-u(v)

—

Property

If W C X*is prefix-free then Y, cwu(w) <1

—

Definition (BERNOULLI measure on X®)

Measure on balls: g(w - X®) := u(w)

Measure on open sets: If W C X* is prefix-free then
AW -X?) = Ewewu(w)
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Comparison of Small and Large Sets

Measure [u(X®) = 1] Topology
very large a(F)=1 F is residual
large a(F) >0 or F is of 2" BAIRE category
F is not measurable
small a(F)=0 F is of 15 BAIRE category
very small #(C(F))=0 = Fisnowhere dense

Proposition (Incomparability (cf. OXTOBY: Measure and Category))
@ There is a nowhere dense set F C X® such that a(F) > 0.
@® There is a set of 15t BAIRE category such that ji(F) = 1.
There is a residual set E C X® such that a(E) = 0.
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Probabilistic Arguments

Bad news for probabilistic arguments

The set of BERNOULLI- (BOREL-normal) sequences over X is of
18t BAIRE category.
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An Example: tukasiewicz Language

Defining equation: L = 0uU1t-E3

pke) = p(0)+u(1) u(t?)
—

© L is a simple deterministic context-free language, hence
prefix-free.

> u(t") = (k)"

® Eq. 2) u(t) = (1 —u(1)) +u(1) - u(£3) has the positive solutions

1 /1 3

t0:1andt1:—§+ OIS

® u(k) is the smallest positive solution of Eq. (2).

O u(t) =5 <1foru(1) =} and u(t) =1foru(1) < 1.

_ n veoy_ J 0 foru(1)=1/2,and
> (et X )_{ 1 foru(1)<1/3

O N,ent” - X?is a Gs-set and dense in {0,1}?, thus its
complement is of 15! BAIRE category.
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Topology and Measure in CANTOR space

Theorem (1976)

Letu: X* — (0,1) be a BERNOULLI measure and let F C X® be a
regular ®-language.
Then F is of 15 BAIRE category if and only if i(F) = 0.

=

Proof Scheme: Induction on BOREL CLASSES

closed F is nowhere dense if and only if i(F) = 0.
[Fs-sets F is a countable union of closed regular ®-languages.

Gg-sets C(F) is the union of F and C(F)\ F, where C(F)\ F
is a regular m-language in F; of 15t BAIRE category.

general F is a countable union of regular w-languages in Gg.
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Balanced Measures

Definition

A finite measure i on X is called balanced if the following holds
true.

de>0Vwe X*'Vxe X: p(wx-X®) > c-u(w-X®) or

Definition (Support)

Let 1 be a finite measure on X®.
The smallest closed set F with u(F) = u(X®) is referred to as the

support supp(2) of f.
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Relativisation: Nowhere dense sets

Definition (Relative density)

Let S,F C X®, S+# 0. We call F nowhere dense in S if for every
non-empty ball SN w - X® in S there is a non-empty sub-ball
SNw-v-X® disjoint with F.

—
Lemma (1998)

Let S C X® be a regular o-language.
A regular o-language F C X is nowhere dense in S if and only if for
every w € pref(S) there is a v € X* such that

© |v| <Ind(~f) -Ind(~g)+1 and
® andw-v e pref(S) and w - v ¢ pref(F).

Observe that SN w - X® # 0 if and only if w € pref(S).
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Relativisation: Inhomogeneity

Example (Inhomogeneity)

For S=0-(0-X)®U1-X® we have:
Fi=0-(0-X)® isof 2" BAIRE category in S, and
F>=1-(0-X)® is nowhere densein S.
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Relativisation: Topology and Measure in CANTOR space

Theorem (St. 1998, Varacca and Vélzer 2006)

Let S C X® regular and closed and F C S be regular. Then the
following are equivalent.

© F istis of 15t BAIRE category in S.

® There is a balanced finite measure u with support supp(z) = S
such that a(F) = 0.

® 1(F) = 0 for all balanced finite measures p with support
supp(i) = S.

Let S C X® regular and closed. Then
U{F : F C SAF is regular and nowhere dense in S}
is a null-set universal for all balanced finite measures u with support

supp(i) = S.
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What w-automata cannot prove

w-automata cannot prove that
@ there are sets in BOREL classes higher than Bool(Gg),
@ there are sets in (GgNTFy) \ Bool(G),
® there are nowhere dense BERNOULLI non-nullsets,
@ there are BERNOULLI nullsets of 2" BAIRE category,

@ there are sets which are BERNOULLI nullsets w.r.t. measure ji
but not w.r.t. measure ji,

—

but they are useful for proving largeness by probabilistic arguments.
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