Logik und Berechenbarkeit 1 Logik und Berechenbarkeit 3

2 Prädikatenlogik

2.1 Syntax der Prädikatenlogik der ersten Stufe

2.1.1 Symbole

 $\begin{array}{lll} & \text{(Individuen-)Variablensymbole:} & v_0, v_1, \dots \\ & \text{(Individuen-)Konstantensymbole:} & c_0, c_1, \dots \\ & Funktionssymbole: & f_0^{(n)}, f_1^{(n)}, \dots & (n=1,2,\dots) \\ & \text{Relationensymbole:} & R_0^{(n)}, R_1^{(n)}, \dots & (n=1,2,\dots) \\ & \text{spezielles Relationensymbol} & \equiv \\ & \text{Junktoren:} & \neg, \land, \lor, \rightarrow, \leftrightarrow \\ & \text{Quantoren:} & \exists, \forall \end{array}$

Folgerung 2.1 *Ist* $X \cup \Sigma_F$ *endlich, so ist* $T[X, \Sigma_F]$ *eine präfixfreie deterministisch kontextfreie Sprache.*

Beobachtung: Die Funktionssymbole $f_i^{(n)}$, $n \ge 1$, operieren wie folgt auf der Menge der Σ -Terme $T[X, \Sigma_F]$:

$$f_i^{(n)}(t_1,\ldots,t_n):=f_j^{(n)}t_1\ldots t_n$$

Folgerung 2.2 Die Menge aller Σ -Terme $T[X, \Sigma_F]$ bildet eine Algebra $\left(T[X, \Sigma_F], \{f_i^{(n)} \mid i, n \in \mathbb{N} \land n \geq 1\}\right)$ mit den Operationen $f_i^{(n)}$.

Logik und Berechenbarkeit 2 Logik und Berechenbarkeit

2.1.2 Terme

funktionale Signatur:
$$\Sigma_F \subseteq \{\underbrace{(c_i,0) \mid i \in \mathbb{N}}\} \cup \{\underbrace{(f_i^{(n)},n) \mid i,n \in \mathbb{N} \land n \geq 1}_{\text{Monstanten}}\}$$

Variablen: $X \subseteq \{v_i \mid i \in \mathbb{N}\}$

Definition 2.1 [Definition der prädikatenlogischen Terme]

- **1. Induktionsanfang (Atome)** Variablensymbole und Konstantensymbole sind Terme.
- **2. Induktionsschritt** Sind t_1, t_2, \ldots, t_n Terme und ist $f_j^{(n)}$ ein Funktionensymbol, so ist $f_j^{(n)} t_1 \ldots t_n$ ein (Σ -) *Term*.
- **3. Abschluß** Eine Zeichenreihe ist nur dann ein Term, wenn dies auf Grund von 1. oder 2. der Fall ist.

2.1.3 Ausdrücke (Formeln)

relationale Signatur: $\Sigma_R \subseteq \{(R_i^{(n)}, n) \mid i, n \in \mathbb{N} \land n \geq 1\} \cup \{(\equiv, 2)\}$

Definition 2.2 [Definition der prädikatenlogischen Ausdrücke]

- **1. Induktionsanfang (Atome)** Sind $t_1, t_2, ..., t_n$ (Σ -)Terme und ist $R_j^{(n)}$ ein Relationensymbol, so sind $R_j^{(n)} t_1 ... t_n$ und $\equiv t_1 t_2$ (Σ -)Ausdrücke.
- **2. Induktionsschritt** Sind φ_1, φ_2 (Σ -)Ausdrücke und ist v ein Variablensymbol, so sind auch $\neg \varphi_1, \land \varphi_1 \varphi_2, \lor \varphi_1 \varphi_2, \rightarrow \varphi_1 \varphi_2$ und $\leftrightarrow \varphi_1 \varphi_2$, sowie $\exists v \varphi_1$ und $\forall v \varphi_1$ (Σ -)Ausdrücke.
- **3. Abschluß** Eine Zeichenreihe ist nur dann ein Ausdruck, wenn dies auf Grund von 1. oder 2. der Fall ist.

Logik und Berechenbarkeit 5 Logik und Berechenbarkeit 7

Notation: Ausd $[X, \Sigma_F, \Sigma_R]$ bezeichne die Menge aller $(\Sigma$ -)*Ausdrücke*.

Folgerung 2.3 *Ist* $X \cup \Sigma_F \cup \Sigma_R$ *endlich, so ist* $\mathsf{Ausd}[X, \Sigma_F, \Sigma_R]$ *eine präfixfreie deterministisch kontextfreie Sprache.*

Definition 2.3 [Teilterme, Teilausdrücke] Es sei $w \in T[X, \Sigma_F] \cup \operatorname{Ausd}[X, \Sigma_F, \Sigma_R]$.

- 1. Ein Infix u von w heißt Teilterm von w, falls u selbst wieder Term ist.
- 2. Ein Infix *u* von *w* heißt *Teilausdruck* von *w*, falls *u* selbst wieder Ausdruck ist.

Folgerung 2.4 Zu jedem $w = w_1 \cdots w_l \in T[X, \Sigma_F] \cup \text{Ausd}[X, \Sigma_F, \Sigma_R]$ und zu jeder Position $i \leq |w|$, kann man effektiv den kleinsten Teilterm bzw. -ausdruck von w bestimmen, der w_i enthält und die Position i überdeckt.

Logik und Berechenbarkeit 6 Logik und Berechenbarkeit

2.1.4 Freie und gebundene Variablen

Variable in Termen

- **1.** Variablensymbole $Var(v_i) := \{v_i\}$
- **2.** Konstantesymbole $Var(c_i) := \emptyset$
- 3. zusammengesetzte Terme $Var(f_j^{(n)}t_1\dots t_n):=\bigcup_{i=1}^n Var(t_i)$

Ψ	$frei(\psi)$	$geb(\psi)$	Bemerkung
$R^{(n)}t_1\ldots t_n$	$\bigcup_{i=1}^{n} Var(t_i)$	0	auch für ≡
$\neg oldsymbol{arphi}$	$frei(oldsymbol{arphi})$	$geb(oldsymbol{arphi})$	
$\circ \boldsymbol{\varphi}_1 \boldsymbol{\varphi}_2$	$frei(\varphi_1) \cup frei(\varphi_2)$	$geb(\varphi_1) \cup geb(\varphi_2)$	$\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
Qνφ	$frei(oldsymbol{arphi})\setminus\{v\}$	$geb(\boldsymbol{\varphi}) \cup \{v\}$	$Q \in \{\forall,\exists\}$
	$Var(\psi) := frei(\psi) \cup geb(\psi)$		

Wirkungsbereiche von Quantoren

Definition 2.4 Es sei $\psi = w_1 \cdots w_l \in \operatorname{Ausd}[X, \Sigma_F, \Sigma_R]$, und es sei $w_i w_{i+1} = \operatorname{Q} v$. Der *Wirkungsbereich* des Quantors $\operatorname{Q} v$ von der Position i aus ist der kleinste Teilausdruck von ψ , der die Position i enthält. \Box

Folgerung 2.5 Es sei ψ ein Ausdruck. Eine Variable v ist genau dann frei in ψ , wenn sie in ψ an einer Stelle vorkommt, die nicht im Wirkungsbereich eines Quantors Qv liegt.

Definition 2.5 Ein Term $t \in T[X, \Sigma_F]$ heißt frei für $v \in X$ in $\psi \in \operatorname{Ausd}[X, \Sigma_F, \Sigma_R]$ falls für alle $v_i \in \operatorname{Var}(t)$ die Variable v an allen Stellen, an denen sie frei in ψ vorkommt, nicht im Wirkunsbereich eines Quantors Qv_i liegt.

2.2 Semantik der Prädikatenlogik

Syntax	Interpretaion	Semantik	
Term oder Ausdruck	wird interpretiert in	Menge M mit "Struktur"	
Individuensymbol	wird interpretiert als	Element von M	
Funktionensymbol	wird interpretiert als	$\int Funktion \ von \ M \ nach \ M, \ d.h.$	
Turikliorierisymbol	wird interpretiert als	Operation auf M	
Relationensymbol	wird interpretiert als	Relation über M	
Menge M mit "Struktu	r" erscheint als	Σ -Struktur	
nur für Terme	\longrightarrow	Algebra	
für Ausdrücke (und Te	erme)	Algebra + Relationen	

Loaik und Berechenbarkeit 9 Loaik und Berechenbarkeit 11

2.2.1 Σ -Strukturen

Definition 2.6 Eine (Σ_F, Σ_R) -Struktur ist ein Paar $S = (M, V_S)$, falls

- 1. $M \neq \emptyset$ eine Menge ist,
- 2. $V_S: \Sigma \to M \cup \bigcup_{n=1}^{\infty} \{f \mid f: M^n \to M\} \cup \bigcup_{n=1}^{\infty} \{R \mid R \subseteq M^n\}$, wobei gilt:
 - (a) Ist c Konstante aus Σ , so ist $V_S(c) \in M$.
 - (b) Ist $f^{(n)}$ Funktionssymbol aus Σ , so ist $V_S(f^{(n)})$ n-stellige Funktion von M in M (n-stellige Operation auf M).
 - (c) Ist $R^{(n)}$ Relationssymbol aus Σ , so ist $V_S(R^{(n)})$ n-stellige Relation über M.

Logik und Berechenbarkeit 10

Wichtig: Σ -Strukturen $S = (M, V_S)$ für $\Sigma = (\Sigma_F, \Sigma_R)$

Definition 2.7 [Belegung von Variablen]

Es sei $S = (M, V_S)$ eine Σ -Struktur.

Eine Abbildung $\beta : \{v_i : i \in \mathbb{N}\} \to M$ heißt *Belegung* der Variablen.

Notation: Ist $\beta : \{v_i : i \in \mathbb{N}\} \to M$ eine Belegung so setzen wir

$$eta rac{a}{v}(y) := \left\{ egin{array}{ll} eta(y) & ext{, für } y
eq v ext{ und} \ a & ext{, für } y = v \, . \end{array}
ight.$$

Σ -Interpretation (Teil 1)

Definition 2.8 [Σ -Interpretation der Terme]

Es seien $S=(M,V_S)$ eine Σ -Struktur und $\beta:\{v_i:i\in\mathbb{N}\}\to M$ eine Belegung.

Wir nennen $\mathfrak{I}_{\beta}: T[X, \Sigma_F] \to M$ eine Σ -Interpretation der Terme, falls

für eine Variable v: $\mathfrak{I}_{\beta}(v) := \beta(v)$,

für eine Konstante c: $\Im_{\beta}(c) := V_{S}(c)$ sowie

für einen zusammengesetzten Term $ft_1 \dots t_n$:

$$\mathfrak{I}_{\mathcal{B}}(ft_1 \dots t_n) := V_S(f)(\mathfrak{I}_{\mathcal{B}}(t_1), \dots, \mathfrak{I}_{\mathcal{B}}(t_n))$$
 gelten.

Notation: $(\mathfrak{I}_{\beta}) \frac{a}{v} := \mathfrak{I}_{(\beta \frac{a}{v})}$

Logik und Berechenbarkeit 12

Σ -Interpretation (Teil 2)

Definition 2.9 [Σ -Interpretation der Ausdrücke] Es seien $S=(M,V_S)$ eine Σ -Struktur und $\beta: \{v_i: i \in \mathbb{N}\} \to M$ eine Belegung.

Wir nennen eine Abbildung \mathfrak{I}_{β} der Σ -Ausdrücke in die Algebra $(\{0,1\},\max,\min,1-(\cdot),0,1)$ eine Σ -Interpretation der Ausdrücke, falls

für atomare Ausdrücke $Rt_1 \dots t_n$: genau dann $\Im_{\beta}(Rt_1 \dots t_n) = 1$ gilt, wenn $(\Im_{\beta}(t_1), \dots, \Im_{\beta}(t_n)) \in V_S(R)$ ist,

und für alle Σ -Ausdrücke φ_1, φ_2 die Beziehungen

für die Junktoren \neg, \lor und \land : $\Im_{\beta}(\neg \varphi_1) := 1 - \Im_{\beta}(\varphi_1)$, $\Im_{\beta}(\lor \varphi_1 \varphi_2) := \max\{\Im_{\beta}(\varphi_1), \Im_{\beta}(\varphi_2)\}$ und $\Im_{\beta}(\land \varphi_1 \varphi_2) := \min\{\Im_{\beta}(\varphi_1), \Im_{\beta}(\varphi_2)\}$, sowie

für die Quantoren
$$\exists, \forall : \ \Im_{\beta}(\exists v \, \varphi_1) := \max \{\Im_{\beta} \frac{a}{v}(\varphi_1) \mid a \in M\}$$
 und $\Im_{\beta}(\forall v \, \varphi_1) := \min \{\Im_{\beta} \frac{a}{v}(\varphi_1) \mid a \in M\}$ gelten.

Logik und Berechenbarkeit 13 Logik und Berechenbarkeit 15

Lemma 2.6 Es seien $S=(M,V_S)$ eine Σ -Struktur und $\beta:X\to M$ eine Belegung, und es sei $F_S:=\{f\mid (f,n)\in\Sigma_F \text{ für ein }n\in\mathbb{N}\}$ die Menge aller in Σ auftretenden Funktionen- (und Konstanten-)symbole.

Dann ist \mathfrak{I}_{β} ein Homomorphismus der Termalgebra $(T[X,\Sigma_F],F_S)$ in die Algebra $(M,\{V_S(f):f\in F_S\})$.

Lemma 2.7 Es seien $S=(M,V_S)$ eine Σ -Struktur und $\beta:X\to M$ eine Belegung, und es sei $R_S:=\{R\mid (R,n)\in\Sigma_R \text{ für ein }n\in\mathbb{N}\}$ die Menge aller in Σ auftretenden Relationensymbole.

Dann ist \mathfrak{I}_{β} ein Homomorphismus der Algebra $\Big(\big\{ Rt_1 \dots t_n \mid t_i \in T[X, \Sigma_F] \big\}, \wedge, \vee, \neg \Big)$ in die Algebra $\Big(\big\{ 0, 1 \big\}, \min, \max, 1 - (\cdot) \Big)$.

Logik und Berechenbarkeit 14

2.2.2 Erfüllbarkeit und Allgemeingültigkeit

Definition 2.10 Eine Menge von Σ-Ausdrücken Φ heißt genau dann *erfüllbar*, wenn es eine Σ-Struktur $S=(M,V_S)$, eine Belegung $\beta:X\to M$ und eine Σ-Interpretation \mathfrak{I}_{β} derart gibt, dass $\mathfrak{I}_{\beta}(\varphi)=1$ für alle Ausdrücke aus $\varphi\in\Phi$ erfüllt ist.

Wir sagen dann auch, \mathfrak{I}_{β} sei *Modell* für (von) Φ .

Definition 2.11 Es sei Φ eine Menge von Ausdrücken, und es sei φ ein Ausdruck. Wir sagen, φ folgt aus Φ (kurz: $\Phi \models \varphi$), falls jede Interpretation \mathfrak{I}_{β} , die Modell für Φ ist auch Modell von φ ist.

M.a.W., falls $\Im_{\beta}(\psi)=1$ für alle $\psi\in\Phi$ gilt, so muß auch $\Im_{\beta}(\varphi)=1$ gelten.

Definition 2.12 Ein Ausdruck φ heißt *allgemeingültig* (kurz: $\models \varphi$), falls $\emptyset \models \varphi$ gilt, d.h. $\Im_{\beta}(\varphi) = 1$ für alle Σ-Strukturen $S = (M, V_S)$ und alle Belegungen $\beta : X \to M$ gilt.

Lemma 2.8 Für alle Φ und alle φ gilt genau dann $\Phi \models \varphi$, wenn $\Phi \cup \{\neg \varphi\}$ **nicht** erfüllbar ist.

Folgerung 2.9 Ein Ausdruck φ ist genau dann allgemeingültig, wenn $\neg \varphi$ **nicht** erfüllbar ist.

Definition 2.13 [Semantische Äquivalenz]

Zwei Ausdrücke φ und ψ heißen semantisch äquivalent $(\varphi \approx \psi)$, falls sowohl $\varphi \models \psi$ als auch $\psi \models \varphi$ gelten, d.h. es gilt für alle Σ -Strukturen $S = (M, V_S)$ und alle Belegungen $\beta : X \to M$ genau dann $\Im_{\beta}(\varphi) = 1$ wenn $\Im_{\beta}(\psi) = 1$ gilt.

Satz 2.10 (Ersetzbarkeitstheorem) *Es sei* $\phi \approx \psi$.

Ist φ ein Teilausdruck von χ und entsteht χ' aus χ durch Ersetzen eines Vorkommens von φ durch ψ , so ist auch $\chi' \approx \chi$.

Logik und Berechenbarkeit 16

Wichtige Äquivalenzen mit Quantoren

$$\neg \forall x \varphi \approx \exists x \neg \varphi
\neg \exists x \varphi \approx \forall x \neg \varphi
\forall x \varphi \land \forall x \psi \approx \forall x (\varphi \land \psi)
\exists x \varphi \lor \exists x \psi \approx \exists x (\varphi \lor \psi)
\forall x \forall y \varphi \approx \forall y \forall x \varphi
\exists x \exists y \varphi \approx \exists y \exists x \varphi$$

für $x \notin \text{frei}(\psi)$ und $\circ \in \{\lor, \land\}$ gelten außerdem

$$(\forall x \, \varphi \circ \psi) \approx \forall x (\varphi \circ \psi)$$
$$(\exists x \, \varphi \circ \psi) \approx \exists x (\varphi \circ \psi)$$

Logik und Berechenbarkeit 19 Logik und Berechenbarkeit 19

Lemma 2.11 [Koinzidenzlemma]

Es seien $S_i := (M_i, V_{S_i}) \Sigma_i$ -Strukturen (i = 1, 2) über demselben Träger $M = M_1 = M_2$.

Weiter seien für i = 1,2 die Abbildungen $\beta_i : X_i \to M$ Belegungen, \mathfrak{I}_i die zugehörigen Interpretationen und $\Sigma := \Sigma_1 \cap \Sigma_2$.

- 1. Ist t ein Σ -Term und stimmen sowohl die V_{S_i} als auch die β_i für die in t auftretenden Symbole überein, so ist $\mathfrak{I}_1(t) = \mathfrak{I}_2(t)$.
- 2. Ist φ ein Σ -Ausdruck und stimmen V_{S_1} und V_{S_2} für die in φ auftretenden Symbole aus Σ und β_1 und β_2 für die in φ frei auftretenden Variablen überein, so gilt genau dann $\mathfrak{I}_1(\varphi)=1$, wenn $\mathfrak{I}_2(\varphi)=1$ gilt.

Logik und Berechenbarkeit 18 Logik

Definition 2.14 [Σ -Redukt]

Sind Σ und Σ' Symbolmengen mit $\Sigma \subseteq \Sigma'$ und $S = (M, V_S)$ und $S' = (M, V_{S'}) \Sigma$ - bzw. Σ' -Strukturen über demselben Träger M.

Ist V_S die Einschränkung von $V_{S'}$ auf Σ (kurz: $V_S = V_{S'}|_{\Sigma}$) sind, so nennen wir S ein Redukt von S' und umgekehrt S' eine Expansion von S. Schreibweise: $S = S'_{\uparrow \Sigma}$

Folgerung 2.12 Ist $\Sigma \subseteq \Sigma'$, so ist eine Menge von Σ -Ausdrücken Φ genau dann bezüglich Σ erfüllbar, wenn Φ bezüglich Σ' erfüllbar ist.

Ein Σ -Satz ist ein Σ -Ausdruck ohne freie Variable.

Lemma 2.13 [Isomorphielemma]

Sind $S_i = (M_i, V_i)$, i = 1, 2, isomorphe Σ -Strukturen, so gilt für alle Σ -Sätze φ und alle Interpretationen \Im_{β_i} , i = 1, 2, genau dann $\Im_{\beta_1}(\varphi) = 1$ wenn $\Im_{\beta_2}(\varphi) = 1$.

Definition 2.15 [Substruktur] $S_i = (M_i, V_i)$, i = 1, 2, seien Σ -Strukturen. S_1 heißt *Substruktur* von S_2 (kurz: $S_1 \subseteq S_2$): \Leftrightarrow

- 1. $M_1 \subseteq M_2$
- 2. Für $R^{(n)} \in \Sigma$ ist $V_1(R^{(n)}) = V_2(R^{(n)}) \cap M_1^n$.
- 3. Für $f^{(n)} \in \Sigma$ ist $V_1(f^{(n)}): M_1^n \to M_1$ die Einschränkung von $V_2(f^{(n)}): M_2^n \to M_2$ auf M_1^n (d.h. $V_1(f^{(n)}) = V_2(f^{(n)}) \cap M_1^{n+1}$).
- 4. Für $c \in \Sigma$ ist $V_1(c) = V_2(c)$.

Bemerkung: Ist $S_1 \sqsubseteq S_2$, so ist $M_1 \Sigma$ -abgeschlossen in S_2 .

Lemma 2.14 Es seien $S_i = (M_i, V_i)$, $i = 1, 2, \Sigma$ -Strukturen mit $S_1 \sqsubseteq S_2$, und es sei $\beta : \{v_i : i \in \mathbb{N}\} \to M_1$ eine Belegung. Dann gelten für jeden Σ -Term t die Beziehung $\mathfrak{I}_{1,\beta}(t) = \mathfrak{I}_{2,\beta}(t)$ und für jeden quantorenfreien Σ -Ausdruck φ genau dann $\mathfrak{I}_{1,\beta}(\varphi) = 1$ wenn $\mathfrak{I}_{2,\beta}(\varphi) = 1$.

20

Logik und Berechenbarkeit

Definition 2.16 [universelle Σ -Ausdrücke]

- 1. Induktionsanfang Atomare Σ -Ausdrücke sind *universelle* $(\Sigma$ -)Ausdrücke.
- **2. Induktionsschritt** Sind φ_1, φ_2 universelle (Σ -)Ausdrücke und ist v ein Variablensymbol, so sind auch $\wedge \varphi_1 \varphi_2$ und $\vee \varphi_1 \varphi_2$, sowie $\forall v \varphi_1$ universelle (Σ -)Ausdrücke.
- Abschluß Eine Zeichenreihe ist nur dann ein universeller Ausdruck, wenn dies auf Grund von 1. oder 2. der Fall ist.

Lemma 2.15 [Substrukturlemma] Es seien $S_i = (M_i, V_i)$, i = 1, 2, Σ -Strukturen mit $S_1 \sqsubseteq S_2$, und es sei $\varphi = \varphi(v_0, \ldots, v_{\ell-1})$ ein universeller Σ -Ausdruck. Dann gilt für alle $a_0, \ldots, a_{\ell-1} \in M_1$:

Aus
$$\mathfrak{I}_2(\varphi(a_0,\ldots,a_{\ell-1}))=1$$
 folgt $\mathfrak{I}_1(\varphi(a_0,\ldots,a_{\ell-1}))=1$.

Logik und Berechenbarkeit 21 Logik und Berechenbarkeit 23

Definition 2.17 [Simultane Substitution]

1. für Terme

$$\begin{array}{rcl} v \frac{t_0, \dots, t_\ell}{v_0, \dots, v_\ell} & := & \left\{ \begin{array}{l} v & \text{, falls } v \neq v_i \ (i = 0, \dots, \ell) \\ t_i & \text{, falls } v = v_i \end{array} \right. \\ \\ c \frac{t_0, \dots, t_\ell}{v_0, \dots, v_\ell} & := & c \\ (ft_1' \dots t_n') \frac{t_0, \dots, t_\ell}{v_0, \dots, v_\ell} & := & ft_1' \frac{t_0, \dots, t_\ell}{v_0, \dots, v_\ell} \dots t_n' \frac{t_0, \dots, t_\ell}{v_0, \dots, v_\ell} \end{array}$$

Logik und Berechenbarkeit 22

2. für Ausdrücke

$$(\equiv t'_1 t'_2) \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} := \equiv t'_1 \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} t'_2 \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}}$$

$$(Rt'_1 \dots t'_n) \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} := Rt'_1 \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} \dots t'_n \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}}$$

$$(\neg \varphi) \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} := \neg \left(\varphi \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} \right)$$

$$(\varphi \circ \psi) \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} := \varphi \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} \circ \psi \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}}$$

$$(Qv\varphi) \frac{t_0, \dots, t_{\ell}}{v_0, \dots, v_{\ell}} := Qu \left(\varphi \frac{t_{i_1}, \dots, t_{i_r}, u}{v_{i_1}, \dots, v_{i_r}, v} \right)$$

In der letzten Gleichung seien v_{i_1},\ldots,v_{i_r} diejenigen unter den v_0,\ldots,v_ℓ , für die $v_i\in frei(\mathbb{Q}v\pmb{\phi})$ und $v_i\neq t_i$, und u sei v, falls v nicht in t_0,\ldots,t_ℓ auftritt, ansonsten sei u die erste nicht in $\pmb{\phi},t_0,\ldots,t_\ell$ vorkommende Variable.

Lemma 2.17 [Substitutionslemma]

1. Für alle Terme t gilt

$$\Im\left(t\,\frac{t_0...t_l}{v_0...v_l}\right)=\Im\frac{\Im(t_0)...\Im(t_l)}{v_0...v_l}(t)$$

2. Für alle Ausdrücke φ gilt genau dann

$$\Im(m{\phi} rac{t_0...t_l}{v_0...v_l})=1$$
 , wenn $\Imrac{\Im(t_0)...\Im(t_l)}{v_0...v_l}(m{\phi})=1$.

Hierbei sei
$$\Im rac{\Im(t_0) \ldots \Im(t_l)}{v_0 \ldots v_l}(v) := \left\{ egin{array}{ll} \Im(t_i) & \text{, falls } v = v_i \text{, und} \\ \Im(v) & \text{, anderenfalls.} \end{array}
ight.$$

Folgerung 2.18

Es sei φ ein Ausdruck, und es seien β, β' Belegungen. Stimmen β und β' auf $frei(\varphi)$ überein, so gilt $\mathfrak{I}_{\beta}(\varphi) = \mathfrak{I}_{\beta'}(\varphi)$.